Giáo án lớp 12 môn Toán - Chương VII: Phương trình lượng giác chứa căn và phương trình lượng giác chứa giá trị tuyệt đối

Cách giải:Áp dụng các công thức

A 0B AB 0

A BA

== ?? =? ? ??B = = ??

2

B0 AB A B

= ?

=??

= ?

Ghi chú :Do theo phương trình chỉnh lý đã bỏ phần bất phương trình lượng

giác nên ta xử lý điều kiện B bằng phương pháp thử lại và chúng tôi bỏ 0 =

các bài toán quá phức tạp.

pdf13 trang | Chia sẻ: manphan | Lượt xem: 915 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Toán - Chương VII: Phương trình lượng giác chứa căn và phương trình lượng giác chứa giá trị tuyệt đối, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHƯƠNG VII PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CĂN VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA GIÁ TRỊ TUYỆT ĐỐI A) PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CĂN Cách giải : Áp dụng các công thức A 0 B A B 0 A B A ≥ ≥⎧ ⎧= ⇔ ⇔⎨ ⎨ B= =⎩ ⎩ 2 B 0 A B A B ≥⎧= ⇔ ⎨ =⎩ Ghi chú : Do theo phương trình chỉnh lý đã bỏ phần bất phương trình lượng giác nên ta xử lý điều kiện B bằng phương pháp thử lại và chúng tôi bỏ 0≥ các bài toán quá phức tạp. Bài 138 : Giải phương trình ( )5cos x cos2x 2sin x 0 *− + = ( )* 5cos x cos2x 2sin x⇔ − = − 2 sin x 0 5cos x cos2x 4sin x ≤⎧⇔ ⎨ − =⎩ ( ) (2 2 sin x 0 5cos x 2cos x 1 4 1 cos x ≤⎧⎪⇔ ⎨ − − = −⎪⎩ ) = 2 sin x 0 2cos x 5cos x 3 0 ≤⎧⇔ ⎨ + −⎩ ( ) sin x 0 1cos x cos x 3 loại 2 ≤⎧⎪⇔ ⎨ = ∨ = −⎪⎩ ≤⎧⎪⇔ π⎨ = ± + π ∈⎪⎩ π⇔ = − + π ∈ sin x 0 x k2 , k 3 x k2 , k 3 Bài 139 : Giải phương trình 3 3 3 3sin x cos x sin x cot gx cos xtgx 2sin2x+ + + = Điều kiện : cos x 0 sin 2x 0 sin x 0 sin 2x 0 sin 2x 0 sin2x 0 ≠⎧ ≠⎧⎪ ≠ ⇔ ⇔ >⎨ ⎨ ≥⎩⎪ ≥⎩ Lúc đó : ( ) 3 3 2 2* sin x cos x sin x cos x cos xsin x 2sin2x⇔ + + + = ( ) ( )2 2sin x sin x cos x cos x cos x sin x 2sin2x⇔ + + + = ( ) ( )2 2sin x cos x sin x cos x 2sin 2x⇔ + + = ( )2 sin x cos x 0 sin x cos x 2sin2x + ≥⎧⎪⇔ ⎨ + =⎪⎩ ( ) sin x 02 sin x 0 44 sin2x 1 nhận do sin2x 01 sin2x 2sin2x ⎧ π⎛ ⎞⎧ π⎛ ⎞ + ≥+ ≥⎪ ⎪ ⎜ ⎟⎜ ⎟⇔ ⇔ ⎝ ⎠⎝ ⎠⎨ ⎨⎪ ⎪ = >+ =⎩ ⎩ ( ) ⎧ π ⎧ π⎛ ⎞ ⎛ ⎞+ ≥ + ≥⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⇔ ⇔⎨ ⎨π π π⎪ ⎪= + π ∈ = + π ∨ = + π ∈⎪ ⎪⎩ ⎩ sin x 0 sin x 0 4 4 5x k , k x m2 x m2 loại , m 4 4 4 π⇔ = + π ∈ x m2 ,m 4 Bài 140 : Giải phương trình ( )π⎛ ⎞+ = ⎜ ⎟⎝ ⎠ 21 8sin 2x.cos 2x 2sin 3x * 4 + Ta có : (*) 2 2 sin 3x 0 4 1 8sin2x cos 2x 4sin 3x 4 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎛ ⎞⎪ + = ⎜ ⎟⎪ ⎝ ⎠⎩ + ( ) ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎡ ⎤⎪ + + = − +⎢ ⎥⎪ ⎣ ⎦⎩ sin 3x 0 4 1 4 sin 2x 1 cos 4x 2 1 cos( 6x ) 2 ( ) ( sin 3x 0 4 1 4sin2x 2 sin6x sin2x 2 1 sin6x ⎧ π⎛ ⎞+ ≥⎪ ⎜ ⎟⇔ ⎝ ⎠⎨⎪ + + − = +⎩ ) ⎧ π ⎧ π⎛ ⎞ ⎛ ⎞+ ≥ + ≥⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⇔ ⇔⎨ ⎨ π π⎪ ⎪= = + π ∨ = + π ∈⎪ ⎪⎩ ⎩ sin 3x 0 sin 3x 0 4 4 1 5sin 2x x k x k , k 2 12 12 So lại với điều kiện sin 3x 0 4 π⎛ ⎞+ ≥⎜ ⎟⎝ ⎠ Khi x k thì 12 π• = + π sin 3x sin 3k cosk 4 2 π π⎛ ⎞ ⎛ ⎞+ = + π =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ π ( ) ( ) ( ) ( ) ⎡= ⎢−⎢⎣ 1 , nếu k chẵn nhận 1, nếu k lẻ loại π• = + π5Khi x k thì 12 π π π⎛ ⎞ ⎛ ⎞ ⎛+ = + π = − + π⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ 3sin 3x sin 3k sin k 4 2 2 ⎞⎟⎠ ( ) ( ) −⎡= ⎢⎢⎣ 1,nếu k chẵn loại 1, nếu k lẻ nhận Do đó ( ) ( )π π⇔ = + π ∨ = + + π ∈ 5* x m2 x 2m 1 ,m 12 12 Bài 141 : Giải phương trình ( )1 sin2x 1 sin2x 4cos x * sin x − + + = Lúc đó : ( )* 1 sin2x 1 sin2x 2sin2x⇔ − + + = ( hiển nhiên sinx = 0 không là nghiệm , vì sinx =0 thì VT = 2, VP = 0 ) 2 22 2 1 sin 2x 4sin 2x sin2x 0 ⎧⎪ + − =⇔ ⎨ ≥⎪⎩ 2 21 sin 2x 2sin 2x 1 sin2x 0 ⎧⎪ − =⇔ ⎨ ≥⎪⎩ − 2 4 2 2 1 sin 2x 4sin 2x 4sin 2x 1 1sin 2x 2 sin2x 0 ⎧ − = −⎪⎪⇔ ≥⎨⎪ ≥⎪⎩ + ( )2 2sin 2x 4sin 2x 3 0 1sin 2x 2 ⎧ − =⎪⇔ ⎨ ≥⎪⎩ ⎧ −= ∨ =⎪⎪⇔ ⎨⎪ ≥⎪⎩ 3 3sin 2x sin 2x 2 2 2sin 2x 2 3sin2x 2 ⇔ = π π⇔ = + π ∨ = + π ∈ 22x k2 2x k2 , k 3 3 π π⇔ = + π ∨ = + π ∈ x k x k , k 6 3 Chú ý : Có thể đưa về phương trình chứa giá trị tuyệt đối ( ) ≠⎧⎪⇔ ⎨ − + + =⎪⎩ ⇔ − + + = sin x 0 * cos x sin x cos x sin x 2sin 2x cos x sin x cos x sin x 2sin 2x Bài 142 : Giải phương trình ( )+ + + =sin x 3 cos x sin x 3 cos x 2 * Đặt sin 3t sin x 3 cos x sin x cos x cos 3 π = + = + π 1t sin x 2sin x 3 3cos 3 π π⎛ ⎞ ⎛ ⎞⇔ = + = +⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ⎝ ⎠ ( ) + =* thành t t 2 ⇔ = − − ≥ ≤⎧ ⎧⇔ ⇔⎨ ⎨= − + − + =⎩ ⎩ ≤⎧⇔ ⇔ =⎨ = ∨ =⎩ 2 2 t 2 t 2 t 0 t 2 t 4 4t t t 5t 4 0 t 2 t 1 t 1 t 4 Do đó ( ) * π π π π π⎛ ⎞⇔ + = ⇔ + = + π + = + π ∈⎜ ⎟⎝ ⎠ 1 5sin x x k2 hay x k2 , k 3 2 3 6 3 6 π π⇔ = − + π ∨ = + π ∈ x k2 x k2 , k 6 2 Bài 143 : Giải phương trình ( ) ( ) ( )+ + = +3 tgx 1 sin x 2 cos x 5 sin x 3cos x * Chia hai vế của (*) cho cos x 0≠ ta được ( ) ( ) ( )* 3 tgx 1 tgx 2 5 tgx 3⇔ + + = + Đặt u tgx 1 với u= + ≥ 0 x Thì 2u 1 tg− = (*) thành ( ) ( )2 23u u 1 5 u 2+ = + 3 23u 5u 3u 10 0⇔ − + − = ( ) ( )2u 2 3u u 5 0⇔ − + + = ( )2u 2 3u u 5 0 vô nghiệm⇔ = ∨ + + = Do đó ( ) ⇔* tgx 1 2+ = tgx 1 4⇔ + = tgx 3 tg với 2 2 π π⎛ ⎞⇔ = = α − < α <⎜ ⎟⎝ ⎠ ,x k kα π⇔ = + ∈ Bài 144 : Giải phương trình ( ) ( )11 cos x cos x cos2x sin4x *2− + = ( ) ( )* 1 cos x cos x cos2x sin 2x cos2x⇔ − + = ≥⎧⇔ − +⎨ =⎩ cos x 0 hay 1 cos x cos x sin 2x cos 2x 0 = ⎧ ≥≥⎧ ⎪⎪⇔ ≥⎨ ⎨π= + π ∈⎪ ⎪⎩ + − =⎩ 2 cos x 0cos x 0 hay sin 2x 0 2x k , k 2 1 2 (1 cos x)cosx sin 2x ⎧ ≥≥⎧ ⎪⎪⇔ ≥⎨ ⎨π π= + ∈⎪ ⎪⎩ + − = ≥ ≥⎩ 2 cos x 0cos x 0 hay sin 2x 0 x k , k 4 2 1 2 (1 cos x)cosx sin 2x ( VT 1 VP ) ≥⎧≥ ⎪⎧ ≥⎪ ⎪⇔ ⎨ ⎨π π= ± + π = ± + π ∈ =⎪ ⎪⎩ ⎪ − =⎩ 2 cos x 0 cos x 0 sin 2x 0 hay5x h hay x h , h sin 2x 1 4 4 (1 cos x ) cos x 0 π⇔ = ± + π ∈ = =⎧ ⎧⎨ ⎨= ⇒ = = ⇒ = ⇒ =⎩ ⎩ x h , h 4 sin 2x 1 sin 2x 1 hay hay cos x 0 ( sin 2x 0 ) cos x 1 ( sin x 0 sin 2x 0 ) π⇔ = ± + π ∈ x h , h 4 Bài 145 : Giải phương trình ( ) ( ) ( )3 3sin x 1 cot gx cos x 1 tgx 2 sin x cos x *+ + + = ( ) 3 3sin x cos x cos x sin x* sin x cos x 2 sin x cos sin x cos x + +⎛ ⎞ ⎛ ⎞⇔ + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ x ( ) ( )2 2sin x cos x sin x cos x 2 sin x cos x⇔ + + = sin x cos x 0 1 sin2x 2sin2x + ≥⎧⇔ ⎨ + =⎩ ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪+ ≥⎧ ⎪ ⎝ ⎠⇔ ⇔⎨ ⎨= π⎩ ⎪ = + π ∈⎪⎩ sin x 0sin x cos x 0 4 sin 2x 1 x k , k 4 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π π⎪ + = + π ∈⎪⎩ sin x 0 4 x k , k 4 2 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π π π π⎪ + = + π + = + π ∈⎪⎩ sin x 0 4 3x h2 hay x h2 , h 4 2 4 2 π⇔ = + π ∈ x h2 , h 4 Bài 146 : Giải phương trình ( )cos2x 1 sin2x 2 sin x cos x *+ + = + Điều kiện cos2x 0và sin x 0 4 π⎛ ⎞≥ +⎜ ⎟⎝ ⎠ ≥ Lúc đó : ( ) ( )22 2* cos x sin x cos x sin x 2 cos x sin x⇔ − + + = + ( ) ( )2 22 2cos x sin x cos x sin x 2 cos2x cos x sin x⇔ − + + + + ( )4 sin x cos x= + ( ) ( ) ( )cos x cos x sin x sin x cos x cos2x 2 sin x cos x⇔ + + + = + sin x cos x 0 cos x cos2x 2 + =⎡⇔ ⎢ + =⎣ ( ) tgx 1 cos2x 2 cos x * * = −⎡⇔ ⎢ = −⎢⎣ 2 tgx 1 cos2x 4 4cos x cos x = −⎡⇔ ⎢ = − +⎣ 2tgx 1 cos x 4cosx 5 0⇔ = − ∨ + − = ( )tgx 1 cos x 1 cos x 5 loại⇔ = − ∨ = ∨ = − π⇔ = − + π ∨ = π ∈ x k x k2 , k 4 Thử lại : ( )π π⎛ ⎞• = − + π = − =⎜ ⎟⎝ ⎠x k thì cos2x cos 0 nhận4 2 Và ( )sin x sin k 0 nhận 4 π⎛ ⎞+ = π =⎜ ⎟⎝ ⎠ ( )• = π =x k2 thì cos 2x 1 nhận và ( )cos x cos 0 nhận 4 4 π π⎛ ⎞+ = >⎜ ⎟⎝ ⎠ Do đó (*) π⇔ = − + π ∨ = π ∈ x k x k2 , k 4 Chú ý : Tại (**) có thể dùng phương trình lượng giác không mực ( ) cos x cos2x 2* * sin x cos x 0 ⎧ + =⎪⇔ ⎨ + ≥⎪⎩ 2 cos x 1 cos2x 2cos x 1 1 sin x cos x 0 =⎧⎪⇔ = −⎨⎪ + ≥⎩ = π ∈ =⎧⇔ ⇔ =⎨ + ≥⎩ cos x 1 x 2k , k sin x cos x 0 Cách khác ( ) ( )22 2* cos x sin x cos x sin x 2 cos x sin x⇔ − + + = + ( )⇔ + − + + = +2(cos x sin x).(cos x sin x ) cos x sin x 2 cos x sin x ( ) + >⎧⎪⇔ + = ⎨ − + + =⎪⎩ cos x sin x 0 cos x sin x 0 hay cos x sin x cos x sin x 2 + >⎧⎪⇔ = − ⎨ + =⎪⎩ cos x sin x 0 tgx 1 hay 2cos x 2 cos 2x 4 + >⎧⎪⇔ = − ⎨ + =⎪⎩ cos x sin x 0 tgx 1 hay cos x cos 2x 2 =⎧π⇔ = − + π ∈ ⎨ =⎩ cos x 1 x k , k hay cos 2x 14 π⇔ = − + πx k hay = π ∈ 4 x 2k , k ( nhận xét: khi cosx =1 thì sinx = 0 và sinx + cosx = 1 > 0 ) BÀI TẬP 1. Giải phương trình : a/ 1 sin x cosx 0+ + = b/ 2 2 4xcos cos x 3 0 1 tg x − =− c/ sin x 3 cos x 2 cos2x 3 sin 2x+ = + + d/ 2sin x 2sin x 2 2sin x 1− + = − e/ = −− 3tgx2 3sin x 3 2 sin x 1 f/ 2 4sin 2x cos 2x 1 0 sin cos x + − = g/ + − + =28 cos 4x cos 2x 1 cos 3x 1 0 h/ 2sin x sin x sin x cosx 1+ + + = k/ 25 3sin x 4 cos x 1 2cos x− − = − l/ 2cos2x cos x 1 tgx= + 2. Cho phương trình : ( )1 sin x 1 sin x mcos x 1+ + − = a/ Giải phương trình khi m = 2 b/ Giải và biện luận theo m phương trình (1) 3. Cho f(x) = 3cos62x + sin42x + cos4x – m a/ Giải phương trình f(x) = 0 khi m = 0 b/ Cho ( ) 2 2g x 2cos 2x 3cos 2x 1= + . Tìm tất cả các giá trị m để phương trình f(x) = g(x) có nghiệm. ( )ĐS : 1 m 0≤ ≤ 4. Tìm m để phương trình sau có nghiệm 1 2cosx 1 2sin x m+ + + = ( )ĐS : 1 3 m 2 1 2+ ≤ ≤ + B) PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CÁC TRỊ TUYỆT ĐỐI Cách giải : 1/ Mở giá trị tuyệt đối bằng định nghĩa 2/ Áp dụng A B A• = ⇔ = ±B ≥≥ ≥⎧⎧ ⎧• = ⇔ ⇔ ⇔ ∨⎨ ⎨ ⎨ ⎨ <⎧= ± ==⎩ ⎩⎩ 2 2 B 0B 0 A 0 A 0 A B = −⎩A B A BA B A B Bài 147 : Giải phương trình ( )cos3x 1 3 sin3x *= − ( ) 2 2 1 3 sin3x 0 * cos 3x 1 2 3 sin3x 3sin 3x ⎧ − ≥⎪⇔ ⎨ = − +⎪⎩ ⎧ ≤⎪⇔ ⎨⎪ − = − +⎩ 2 2 1sin 3x 3 1 sin 3x 1 2 3 sin 3x 3sin 3x ⎧ ≤⎪⇔ ⎨⎪ − =⎩ 2 1sin 3x 3 4 sin 3x 2 3 sin 3x 0 ⎧ ≤⎪⎪⇔ ⎨⎪ = ∨ =⎪⎩ 1sin 3x 3 3sin 3x 0 sin 3x 2 ⇔ = π⇔ = ∈ sin 3x 0 kx , k 3 Bài 148 : Giải phương trình ( )3sin x 2 cos x 2 0 *+ − = ( )* 2 cos x 2 3sin⇔ = − x 2 2 2 3sin x 0 4cos x 4 12sin x 9sin x − ≥⎧⇔ ⎨ = − +⎩ ( ) ⎧ ≤⎪⇔ ⎨⎪ − = − +⎩ 2 2 2sin x 3 4 1 sin x 4 12sin x 9sin x ⎧ ≤⎪⇔ ⎨⎪ − =⎩ 2 2sin x 3 13sin x 12sin x 0 ⎧ ≤⎪⎪⇔ ⎨⎪ = ∨ =⎪⎩ 2sin x 3 12sin x 0 sin x 13 ⇔ = ⇔ = π ∈ sin x 0 x k , k Bài 149 : Giải phương trình ( )sin x cos x sin x cos x 1 *+ + = Đặt t sin x cos x 2 sin x 4 π⎛ ⎞= + = +⎜ ⎟⎝ ⎠ Với điều kiện : 0 t 2≤ ≤ Thì 2t 1 2sin xcos= + x Do đó (*) thành : 2t 1 t 1 2 − + = ( ) 2t 2t 3 0 t 1 t 3 loại ⇔ + − = ⇔ = ∨ = − Vậy ( ) ⇔* 21 1 2sin xcos= + x ⇔ = π⇔ = ∈ sin 2x 0 kx , k 2 Bài 150 : Giải phương trình ( )sin x cos x 2sin 2x 1 *− + = Đặt ( )t sin x cos x điều kiện 0 t 2= − ≤ ≤ Thì 2t 1 sin2= − x ( ) ( )2* thành: t 2 1 t 1+ − = ( ) 22t t 1 0 1t 1 t loại dođiều kiện 2 ⇔ − − = ⇔ = ∨ = − khi t = 1 thì 21 1 sin2= − x ⇔ = π⇔ = ∈ sin 2x 0 kx , k 2 Bài 151 : Giải phuơng trình ( )4 4sin x cos x sin x cos x *− = + ( ) ( ) ( )2 2 2 2* sin x cos x sin x cos x sin x cos x⇔ + − = + cos2x sin x cos x⇔ − = + 2 cos2x 0 cos 2x 1 2 sin x cos x − ≥⎧⎪⇔ ⎨ = +⎪⎩ 2 cos2x 0 1 sin 2x 1 sin2x ≤⎧⎪⇔ ⎨ − = +⎪⎩ 2 cos2x 0 sin2x sin 2x ≤⎧⎪⇔ ⎨ = −⎪⎩ cos2x 0 sin2x 0 ≤⎧⇔ ⎨ =⎩ 2 cos2x 0 cos2x 1 cos 2x 1 ≤⎧⇔ ⇔⎨ =⎩ = − π⇔ = + π ∈ x k , k 2 Bài 152 : Giải phương trình ( )23 sin2x 2cos x 2 2 2cos2x *− = + Ta có : ( ) ( )2 2* 2 3 sin x cos x 2cos x 2 2 2 2cos x 1⇔ − = + − 3 1cos x sin x cos x cos x 2 2 ⎛ ⎞⇔ −⎜ ⎟⎜ ⎟⎝ ⎠ = cos x.sin x cos x 6 π⎛ ⎞⇔ − =⎜ ⎟⎝ ⎠ cos x 0 cos x 0 cos x 0 sin x 1 sin x 1 6 6 > <⎧ ⎧⎪ ⎪⇔ = ∨ ∨π π⎨ ⎨⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎩ = − > <⎧ ⎧⎪ ⎪⇔ = ∨ ∨π π π π⎨ ⎨− = + π ∈ − = − + π ∈⎪ ⎪⎩ ⎩ cos x 0 cos x 0 cos x 0 x k2 , k x k2 , k 6 2 6 2 > <⎧ ⎧π ⎪ ⎪⇔ = + π ∈ ∨ ∨π π⎨ ⎨= + π ∈ = − + π ∈⎪ ⎪⎩ ⎩ cos x 0 cos x 0 x k , k 22 x k2 , k x k2 , k 3 3 π⇔ = + π ∈ x k , k 2 Bài 153 : Tìm các nghiệm trên ( )0,2π của phương trình : ( )sin3x sin x sin2x cos2x * 1 cos2x − = +− Ta có : ( ) 2cos2xsin x* 2 co 42 sin x s 2x π⎛ ⎞⇔ = ⎜ ⎟⎝ ⎠− Điều kiện : sin x 0 x k≠ ⇔ ≠ π ( )Khi x 0, thìsin x 0nên :• ∈ π > ( )* 2 cos2x 2 cos 2x 4 π⎛ ⎞⇔ = ⎜ ⎟⎝ ⎠− ( ) π⎛ ⎞⇔ = ± − + π ∈⎜ ⎟⎝ ⎠ π⇔ = + π ∈ π π⇔ = + ∈ π π∈ π = = 2x 2x k2 , k 4 4x k2 , k 4 kx , k 16 2 9Do x 0, nên x hay x 16 16 Khi ( )x ,2∈ π π thì sinx < 0 nên : ( ) ( ) ( ) π⎛ ⎞⇔ − = −⎜ ⎟⎝ ⎠ π⎛ ⎞⇔ π − = −⎜ ⎟⎝ ⎠ π⇔ − = ± π − + π ∈ π⇔ = + π ∈ π π⇔ = + ∈ * cos 2x cos 2x 4 cos 2x cos 2x 4 2x 2x k2 , k 4 54x k2 , k 4 5 kx , k 16 2 Do ( )x ,2∈ π π π π= ∨ = •21 29nên x x 16 16 Bài 154 Cho phương trình : 6 6sin x cos x a sin 2x (*)+ = Tìm a sao cho phương trình có nghiệm. Ta có : ( ) ( ) ( ) + = + − + = + − = − 6 6 2 2 4 2 2 4 22 2 2 2 2 sin x cos x sin x cos x sin x sin x cos x cos x sin x cos x 3sin x cos x 31 sin 2x 4 Đặt t = sin 2x điều kiện 0 t 1≤ ≤ thì (*) thành : ( )− =231 t at * * 4 1 3 t a t 4 ⇔ − = (do t = 0 thì (**) vô nghiệm) Xét ( ]= − =1 3y t trên D t 4 0,1 thì 2 1 3y ' 0 t 4 = − − < Do đó : (*) có nghiệm 1a 4 ⇔ ≥ • Bài 155 Cho phương trình ( )= +2cos 2x m cos x 1 tgx * Tìm m để phương trình có nghiệm trên 0, 3 π⎡ ⎤⎢ ⎥⎣ ⎦ Đặt t = tgx thì Vậy : (*) thành: ( )21 t m 1 t * *− = + (chia 2 vế cho ) 2cos 0≠ Khi 0 x 3 π≤ ≤ thì t 0, 3⎡ ⎤∈ ⎣ ⎦ Vậy (**) ( ) ( ) ( )2 1 t 1 t1 tm 1 1 t 1 t − +−⇔ = = = − ++ + t 1 t Xét ( )y 1 t 1 t trên 0, 3⎡ ⎤= − + ⎣ ⎦ Ta có ( ) ( ) ( )− − + + −= − + + =+ + − − ⎡ ⎤⇔ = < ∀ ∈ ⎣ ⎦+ 1 t 2 1 t 1 t y ' 1 t 2 1 t 2 1 t 3t 1y ' 0 t 0, 3 2 1 t Do đó : (*) có nghiệm trên 0, 3 π⎡ ⎤⎢ ⎥⎣ ⎦ ( )1 3 1 3 m 1⇔ − + ≤ ≤ • BÀI TẬP 1. Giải các phương trình 2 2 a/ sin x cox 1 4sin2x b/ 4sin x 3 cos x 3 1c/ tgx cot gx cos x 1 1 1 1 3cosd/ 2 2 sin x 1 cos x 1 cos x sin x 1e/ cot gx tgx sin x f/ 2cos x sin x 1 1 cos x 1 cos xg/ 4sin x cos x 1 cos2x 1h/ 2 cos x sin x 2 m/ cos2x 1 − = − + = = + ⎛ ⎞++ − = − ⎜ ⎟− + ⎝ ⎠ = + − = + + − = − ⎛ ⎞= −⎜ ⎟⎝ ⎠ + + x 3 3 2 sin x cos xsin2x 2 n/ cos x sin3x 0 1r/ cot gx tgx sin x s/ cos x 2sin2x cos3x 1 2sin x cos2x tg x 1o/ tgx 1 tgx 1 tgx 1 p/ sin x cos x sin x cos x 2 += + = = + + − = + − = + +− − − + + = 2. sin x cos x a sin 2x 1+ + = Tìm tham số a dương sao cho phương trình có nghiệm 3. Cho phương trình: sin x cos x 4sin 2x m− + = a/ Giải phương trình khi m = 0 b/ Tìm m để phương trình có nghiệm (ĐS 652 4 m 16 − ≤ ≤ ) Th.S Phạm Hồng Danh (TT luyện thi ĐH Vĩnh Viễn)

File đính kèm:

  • pdfLuonggiac-Chuong7.pdf