I. Một số kĩ năng giải toán:
Trong 1 tam giác cân: đường trung tuyến ứng với cạnh đáy đồng thời cũng là đường cao.
Trong 1 tam giác đều : đường trung tuyến đồng thời cũng là đường cao, đường phân giác, đường trung trực.
Trong cùng một mặt phẳng, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
Trong một tam giác, một đường thẳng cắt hai cạnh của tam giác và định ra trên hai cạnh ấy những tỉ lệ bằng nhau thì đường thẳng ấy sẽ song song với cạnh thứ 3.
2 trang |
Chia sẻ: lephuong6688 | Lượt xem: 912 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng môn học Hình học lớp 11 - Đường thẳng vuông góc với mặt phẳng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG
Kiến thức cơ bản
Các tính chất quan trọng
Định lí
Giả thiết – Kết luận
Ý nghĩa
Nếu đường thẳng d vuông góc với 2 đường thẳng cắt nhau cùng nằm trong thì d vuông góc với
.
c/m đường thẳng vuông góc với mặt phẳng: Cm cho đt ấy vuông góc với 2 đt cắt nhau, cùng nằm trong mp đã cho
Nếu d vuông góc với mặt phẳng thì vuông góc với mọi đường thẳng nằm trong
C/m đường thẳng vuông góc với đường thẳng.
Cho hai mặt phẳng song song, nếu 1 đường thẳng vuông góc với mặt phăng này thì cũng vuông góc với mp kia.
c/m đường thẳng vuông góc với mặt phẳng nhờ quan hệ song song.
Cho đường thẳng b không nằm trong , không vuông góc với , gọi b’ là hình chiếu vuông góc của b lên , a là đường thẳng nằm trong . Khi đó
(Định lí 3 đường vuông góc)
gt
b không , , b’ là hình chiếu của b lên
kl
c/m đường thẳng vuông góc với đường thẳng:
Cho hình chiếu b’của đt b và đt a cùng nằm trong mp:
+ Nếu thì
+ Nếu thì
Cho hai đường thẳng song song, nếu một mp vuông góc với đt này thì cũng vuông góc với đt kia
c/m đường thẳng vuông góc với mặt phẳng nhờ quan hệ song song
Cho hai đường thẳng song song, nếu 1 đường thẳng vuông góc với đt này thì cũng vuông góc với đt kia.
C/m đường thẳng vuông góc với đường thẳng nhờ quan hệ song song.
Một số kĩ năng giải toán:
Trong 1 tam giác cân: đường trung tuyến ứng với cạnh đáy đồng thời cũng là đường cao.
Trong 1 tam giác đều : đường trung tuyến đồng thời cũng là đường cao, đường phân giác, đường trung trực.
Trong cùng một mặt phẳng, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
Trong một tam giác, một đường thẳng cắt hai cạnh của tam giác và định ra trên hai cạnh ấy những tỉ lệ bằng nhau thì đường thẳng ấy sẽ song song với cạnh thứ 3.
Cách xác định góc giứa đường thẳng va mặt phẳng: Gọi là góc giữa đường thẳng d và mặt phẳng
Nếu
Nếu
Nếu d không vuông góc, không song song, không nằm trong với :
+ Xác định giao điểm A của d và
+ Lấy B thuộc d ( B khác A). Tìm hình chiếu B’ của B lên
+ Kết luận
Chú ý: Sử dụng tỉ số lượng giác để tính
Bài tập
Cho hình chóp S.ABCD có đáy là vuông ABCD tâm O, SA vuông góc với mp(ABCD). Gọi H, I, K lần lượt là hình chiếu của A lên SB, SC, SD. Chứng minh rằng:
.
.
Chứng minh A, H, I, K đồng phẳng.
Cho hình chóp tứ giác S.ABCD, đáy là hình bình hành, tam giác DAB vuông tại A, tam giác SCD vuông tại D. Chứng minh rằng AB vuông góc với mp(SAD).
Cho hình chóp tứ giác S.ABCD, đáy là hình thoi, SA = SC. Chứng minh rằng AC vuông góc với mp(SBD).
Cho hình chóp tứ giác S.ABCD, đáy là hình chữ nhật, tam giác SBC vuông tại B, tam giác SCD vuông tại D. Chứng minh rằng SA vuông góc với mp(ABCD).
Cho hình chóp tứ giác S.ABCD, đáy là hình chữ nhật, SA = SB. Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng AB (SIJ).
Cho hình chóp tứ giác S.ABCD, đáy là hình chữ nhật, SA vuông góc với mp(ABCD). Chứng minh rằng các mặt bên là những tam giác vuông.
Cho hình chóp tứ giác S.ABCD, đáy là hình bình hành tâm O, , M là trung điểm của cạnh SC. CMR:
Cho hình chóp tứ giác S.ABCD, đáy là hình thoi tâm O, SA = SC, SB = SD:
a)
b) Gọi I, K lần lượt là trung điểm của BA, BC. CMR:
Chứng minh rằng các cặp cạnh đối của tứ diên đều thì vuông góc.
Cho tứ diện SABC, , SA = a, , tam giác SBC cân tại S. Tính góc giữa:
SB và mp(ABC).
SC và mp(ABC).
Cho hình chóp S.ABCD, đáy là hình chữ nhật, AB = SA = a, , Tính góc giữa:
SB và mp(ABCD).
SD và mp(ABCD).
SD và mp(SAB).
Cho hình chóp S.ABCD có đáy là vuông ABCD tâm O cạnh a, ,. Tính góc giữa SC và mp(ABCD).
File đính kèm:
- Bai tap duong thang vuong goc voi mat phang(1).doc