Giúp học sinh:
Về kiến thức:
- Củng cố các kiến thức đã học về phương trình ax + b = 0 và pt ax2 + bx = c = 0.
Về kĩ năng:
- Rèn luyện việc giải và biện luận pt ax = b =0; ax2 + bx + c = 0, biện số nghiệm của đồ thị bằng phương trình và các bài toán về việc áp dụng định Vi-et.
2 trang |
Chia sẻ: thumai89 | Lượt xem: 1008 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng Tiết 28, 29: Luyện tập, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết 28, 29 LUYỆN TẬP
MỤC TIÊU
Giúp học sinh:
Về kiến thức:
Củng cố các kiến thức đã học về phương trình ax + b = 0 và pt ax2 + bx = c = 0.
Về kĩ năng:
Rèn luyện việc giải và biện luận pt ax = b =0; ax2 + bx + c = 0, biện số nghiệm của đồ thị bằng phương trình và các bài toán về việc áp dụng định Vi-et.
CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH
Giáo viên cần chuẩn bị bài kỉ khai thác nhiều khía cạnh của vấn đế.
Học sinh cần làm bài tập ở nhà, đến lớp họat động theo nhóm
TIẾN TRÌNH BÀI DẠY
Hoạt động của giáo viên
Hoạt động của học sinh
H1: 12. Giải và biện luận các phương trình sau ( mlà tham số)
a) (m +1)x – m(x – 1) = 2m + 3
b) m2(x – 1) + 3mx = (m2 + 3)x
c) 3(m + 1)x + 4 = 2x + 5(m + 1);
d) m2 x + + 6 = 4x + 3m.
H2: 13.
a) Tìm các giá trị của p để phương trình
(p + 1)x – (x + 2) = 0 vô nghiệm.
b) Tìm các giá trị của p để phương trình
p2x – p = 4x + 3m có nghiệm với
H3 14. Tính nghiệm gần đúng của các phương trình sau
a) x2 – 5,60x + 6,41;
b)
H4 :15. Tìm độ dài các cạnh của tam giác vuông, biết rằng cạnh thứ nhất dài hơn cạnh thứ hai là 2m, cạnh thứ hai dài hơn cạnh thứ ba là 23m.
H5 : 16. Giải và biện luận các phương trình sau
a) (m -1)x2 + 7x - 12 = 0;
b) mx2 – 2(m + 3)x + m +1 = 0;
c) [(k +1)x -1](x – 1) = 0;
d) (mx -2)(2mx – x + 1) = 0.
H6 : 17. Biện luận số giao điểm của hai parabol y = - x2 – 2x + 3; y = x2 - m
H7 : 18. Tìm giá trị của tham số m để phương trình x2 – 4x + m – 1 = 0 có hai nghiệm x1 và x2 thỏa mãn
H8 : 19. Giải phương trình
x2 + 4(m + 1)x + 2(m – 4) = 0, biết rằng phương trình có hai nghiệm và hiệu giữa nghiệm lớn và nghiệm nhỏ bắng 17.
H9 : 20. Không giải phương trình, hãy xét xem mỗiphương trình sau có bao nhiêu nghiệm
a) x4 + 8x2 + 12 = 0;
b) -1,5x4 – 2,6x2 + 1 = 0;
c) ;
d) .
H10 : 21. Cho phương trình
kx2 – 2(k + 1)x +k +1 = 0
a) Tìm các giá trị của k để phương trình có ít nhất một nghiệm.
b) Tìm các giá trị của k để phương trình trên có một nghiệm lớn hơn 1 và một nghiệm nhỏ hơn 1
- Học sinh đưa phương trình về dạng
ax = - b
- Thực hiện phép biện luận.
- Cho học sinh nhận diện trong phép biện luận ĐK để phương trình: vô nghiệm. Có nghiệm với mọi x.
Học sinh cần hiểu nghiệm gần đúng sai số với hai chữ số thập phân.
- Học sinh cần nhận biết lại mối liên quan giữa các cạnh của tam giác vuông
- Aùp dụng định lí Pitago để lập được phương trình bậc hai một ẩn.
a); b) Thực hiện phép giải và biện luận
c) pt
- Cho HS phát hiện phương trình luôn có nghiệm bằng 1
- Biện luận số điểm chung của hai đồ thị bằng biện luận số nghiệm của phương trình hoành độ giao điểm của chúng.
- ĐK để phương trình có hai nghiệm
- Biến đổi theo x+ x2 và x1x2
Rồi áp dụng định lí Vi – et.
- Phương trình luôn có hai nghiệm.
- Giả sử x1 < x2. Ta có x2- x1 = 17
(x2- x1)2= 172
HS cần nhận biết mối liên quan giữa số nghiệm của phương trình trùng phương và số nghiệm của phương trình trung gian.
- cần tìm đk để phương trình
ky2 – 2y – 1 = 0 có hai nghiệm trai dấu.
Củng cố
Xem lại các bước giải và biện luận phương trình ax + b = 0; ax2 + bx + c = 0.
Aùp dụng của dịnh lí Vi-et, dấu của các nghiệm của phương trình bậc hai.
File đính kèm:
- TIET 28, 29.doc