Bài 1. Cho tam giác ABC có AB = AC . Trên đường thẳng vuông góc với AC tại C lấy điểm D sao cho hai điểm B , D nằm khác phía đối với đường thẳng AC . Gọi K là giao điểm của đường thẳng qua B vuông góc với AB và đường thẳng qua trung điểm M của CD và vuông góc với AD. Chứng minh KB = KD
Bài 2. Cho ∆ABC, gúc B = 600, AB = 7cm, BC = 14cm. Trờn BC lấy điểm D sao cho gúc BAD = 600. Gọi H là trung điểm của BD
a/ Tớnh độ dài HD b/ Chứng minh rằng ∆DAC cõn
c/ ∆ABC là tam giỏc gỡ? d/ Chứng minh rằng AB2 + CH2 = AC2 + BH2
2 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 5546 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài tập hình học 7, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BÀI TẬP HèNH HỌC
Bài 1. Cho tam giác ABC có AB = AC . Trên đường thẳng vuông góc với AC tại C lấy điểm D sao cho hai điểm B , D nằm khác phía đối với đường thẳng AC . Gọi K là giao điểm của đường thẳng qua B vuông góc với AB và đường thẳng qua trung điểm M của CD và vuông góc với AD. Chứng minh KB = KD
Bài 2. Cho ∆ABC, gúc B = 600, AB = 7cm, BC = 14cm. Trờn BC lấy điểm D sao cho gúc BAD = 600. Gọi H là trung điểm của BD
a/ Tớnh độ dài HD b/ Chứng minh rằng ∆DAC cõn
c/ ∆ABC là tam giỏc gỡ? d/ Chứng minh rằng AB2 + CH2 = AC2 + BH2
Bài 3. Cho tam giỏc ABC, M là trung điểm của BC. Trờn tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a) AC = EB và AC // BE
b) Gọi I là một điểm trờn AC ; K là một điểm trờn EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng
c) Từ E kẻ . Biết = 50o ; =25o .
Tính số đo góc và góc
Bài 4. Cho tam giỏc ABC cõn tại A cú góc A =200, vẽ tam giỏc đều DBC (D nằm trong tam giỏc ABC). Tia phõn giỏc của gúc ABD cắt AC tại M. Chứng minh:
Tia AD là phõn giỏc của gúc BAC
AM = BC
Bài 5. Cho tam giác ABC có Â < 900. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC.
Chứng minh: DC = BE và DC BE
Gọi N là trung điểm của DE. Trên tia đối của tia NA lấy M sao cho NA = NM. Chứng minh: AB = ME và ABC = EMA
Chứng minh: MA BC
Bài 6. Cho tam giác ABC có góc B bằng 450 , góc C bằng 1200. Trên tia đối của tia CB lấy điểm D sao cho CD = 2CB . Tính góc ADE
Bài 7. Cho ∆ABC nhọn. Vẽ về phớa ngoài ∆ABC cỏc ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
1, ∆ABE = ∆ADC
2,
Bài 8. Cho ba điểm B, H, C thẳng hàng, BC = 13 cm, BH = 4 cm, HC = 9 cm. Từ H vẽ tia Hx vuụng gúc với đường thẳng BC. Lấy A thuộc tia Hx sao cho HA = 6 cm.
1, ∆ABC là ∆ gỡ ? Chứng minh điều đú.
2, Trờn tia HC lấy điểm D sao cho HD = HA. Từ D vẽ đường thẳng song song với AH cắt AC tại E.
Chứng minh: AE = AB
Bài 9. Cho tam giỏc ABC cú AB < AC; AB = c, AC = b. Qua M là trung điểm của BC kẻ đường vuụng gúc với đường phõn giỏc trong của gúc A, cắt cỏc đường thẳng AB, AC lần lượt tại D, E.
1, Chứng minh BD = CE. 2, Tớnh AD và BD theo b, c
Bài 10. Cho ∆ABC cõn tại A, . D là điểm thuộc miền trong của ∆ABC sao cho .
Tớnh gúc ADB ?
Bài 11. Cho ∆ABC nhọn. Vẽ về phớa ngoài ∆ABC cỏc ∆ đều ABD và ACE.
1, Chứng minh: BE = DC.
2, Gọi H là giao điểm của BE và CD. Tớnh số đo gúc BHC.
Bài 12. Cho DABC dựng tam giác vuông cân BAE; BAE = 900, B và E nằm ở hai nửa mặt phẳng khác nhau bờ AC. Dựng tam giác vuông cân FAC, FAC = 900. F và C nằm ở hai nửa mặt phẳng khác nhau bờ AB.
a) Chứng minh rằng: DABF = DACE
b) FB ^ EC.
Bài 13. Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Bài 14. Cho tam giác ABC có góc ABC = 500 ; góc BAC = 700 . Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400.
Chứng minh: BN = MC.
Bài 15. Cho DABC có góc A bằng 1200 . Các đường phân giác AD, BE, CF .
a) Chứng minh rằng DE là phân giác ngoài của DADB.
b) Tính số đo góc EDF và góc BED.
Bài 16. Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2. Chứng minh rằng góc PCQ bằng 450.
Bài 17. Cho tam giác nhọn ABC. Kẻ AH ^ BC (H ẻ BC). Vẽ AE ^ AB và AE = AB (E và C khác phía đối với AC). Kẻ EM và FN cùng vuông góc với đường thẳng AH (M, N ẻ AH). EF cắt AH ở O.
Chứng minh rằng O là trung điểm của EF.
Bài 18. Cho tam giác ABC, AK là trung tuyến. Trên nửa mặt phẳng không chứa B, bờ là AC, kẻ tia Ax vuông góc với AC; trên tia Ax lấy điểm M sao cho AM = AC. Trên nửa mặt phẳng không chứa C, bờ là AB, kẻ tia Ay vuông góc với AB và lấy điểm N thuộc Ay sao cho AN = AB. Lấy điểm P trên tia AK sao cho AK = KP. Chứng minh:
a) AC // BP.
b) AK ^ MN.
Bài 19. Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a) Chứng minh: EM + HC = NH.
b) Chứng minh: EN // FM.
Bài 20. Cho tam giác ABC, trung tuyến AM. Trên nửa mặt phẳng chứa đỉnh C bờ là đường thẳng AB dựng đoạn AE vuông góc với AB và AE = AB. Trên nửa mặt phẳng chứa đỉnh B bờ là đường thẳng AC dựng đoạn AF vuông góc với AC và AF = AC. Chứng minh rằng:
a) FB = EC b) EF = 2 AM c) AM ^ EF.
File đính kèm:
- On he hinh 7.doc