I. Tính đạo hàm bằng định nghĩa
Bài 1. Dùng định nghĩa tính đạo hàm của các hàm số sau tại các điểm:
1) f(x) = 2x2 + 3x + 1 tại x = 1
2) f(x) = sinx tại x =
3) f(x) = tại x = 1
4) f(x) = tại x = 0
5) f(x) = tại x = 2
6) f(x) = tại x = 0
7) f(x) = tại x = 0
8) f(x) = tại x = 0
Bài 2. Dùng định nghĩa tính đạo hàm của các hàm số sau:
1) y = 5x – 7 2) y = 3x2 – 4x + 9
3) y = 4) y =
5) y = x3 + 3x – 5 6) y = + x
3 trang |
Chia sẻ: oanh_nt | Lượt xem: 1580 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài tập về đạo hàm, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Bài tập về đạo hàm
I. Tính đạo hàm bằng định nghĩa
Bài 1. Dùng định nghĩa tính đạo hàm của các hàm số sau tại các điểm:
1) f(x) = 2x2 + 3x + 1 tại x = 1
2) f(x) = sinx tại x =
3) f(x) = tại x = 1
4) f(x) = tại x = 0
5) f(x) = tại x = 2
6) f(x) = tại x = 0
7) f(x) = tại x = 0
8) f(x) = tại x = 0
Bài 2. Dùng định nghĩa tính đạo hàm của các hàm số sau:
1) y = 5x – 7 2) y = 3x2 – 4x + 9
3) y = 4) y =
5) y = x3 + 3x – 5 6) y = + x
II. Quan hệ giữa tính liên tục và sự có đạo hàm
Bài 3. Cho hàm số f(x) =
Chứng minh rằng hàm số liên tục trên R nhưng không có đạo hàm tại x = 0.
Bài 4. Cho hàm số f(x) =
1) Chứng minh rằng hàm số liên tục trên R
2) Hàm số có đạo hàm tại x = 0 không? Tại sao?.
Bài 5. Cho hàm số f(x) =
Tìm a, b để hàm số có đạo hàm tại x = 1
Bài 6. Cho hàm số f(x) =
Tìm a, b để hàm số có đạo hàm tại x = 0
Bài 7. Cho hàm số f(x) =
Tìm a để hàm số không có đạo hàm tại x = 3.
III. Tính đạo hàm bằng công thức:
Bài 8. Tính đạo hàm của các hàm số sau:
1) y = x3 – 2x2 + 3x 2) y = - x4 + 2x2 + 3
3) y = (x2 + 1)(3 – 2x2) 4) y = (x – 1)(x – 2)(x – 3)
5) y = (x2 + 3)5 6) y = x(x + 2)4
7) y = 2x3 – 9x2 + 12x – 4 8) y = (x2 + 1)(x3 + 1)2(x4 + 1)3
Bài 9. Tính đạo hàm của các hàm số sau :
1) y = 2) y =
3) y = 4) y =
5) y = 6) y =
7) y = 8) y =
Bài 10. Tính đạo hàm của các hàm số sau:
1) y = 2) y =
3) y = (x – 2) 4) y =
5) y = 6) y = x +
7) y = 8) y = +
III. Viết phương trình tiếp tuyến của dồ thị tại một điểm
Bài 11. Cho hàm số y = x3 – 2x2 + 3x (C)
1) Viết phương trình tiếp tuyến D với đồ thị (C) tại điểm có hoành độ là x = 2.
2) Chứng minh rằng D là tiếp tuyến có hệ số góc nhỏ nhất
Bài 12. Cho hàm số y = -x3 + 3x + 1 (C)
1) Viết phương trình tiếp tuyến D của (C) tại điểm có hành độ là x = 0
2) Chứng minh rằng tiếp tuyến D là tiếp tuyến của (C) có hệ số góc lớn nhất.
Bài 13.
1) Viết phương trình tiếp tuyến với đồ thị của hs: y = x3 – 3x2 + 2 tại điểm (-1; -2)
2) Viết phương trình tiếp tuyến với đồ thị của hàm số y = tại điểm có hoành độ x = 0
IV. Viết phương trình tiếp tuyến của đồ thị (C) khi biết hệ số góc k.
Bài 14.
1) Viết phương trình tiếp tuyến với đồ thị của hàm số y = biết hệ số góc của tiếp tuyến là .
2) Viết phương trình tiếp tuyến với đồ thị của hàm số y = x2 – 2x = 3 biết:
a) Tiếp tuyến song song với đường thẳng 4x – 2y + 5 = 0
b) Tiếp tuyến vuông góc với đường thẳng x + 4y = 0
Bài 15. Cho hàm số y = (C)
Viết phương trình tiếp tuyến với đồ thị (C) biết:
1) Hoành độ của tiếp điểm là x = 0
2) Tiếp tuyến song song với đường thẳng y = - x + 3
3) Tiếp tuyến vuông góc với đường thẳng 4x – y + 10 = 0
4) Biết hệ số góc của tiếp tuyến là -
V. Viết phương trình tiếp tuyến đi qua một điểm:
Bài 16. Cho hàm số y = x3 – 3x2 + 2 (C)
1) Viết phương trình tiép tuyến của (C) kẻ từ điểm A(0; 2)
2) Tìm trên đường thẳng y = 2 các điểm để từ đó có thể kẻ được 2 tiếp tuyến vuông góc với nhau.
Bài 17. Viết phương trình tiếp tuyến với đồ thị của hàm số y = f(x) biết:
1) f(x) = 3x – 4x3 và tiếp tuyến đi qua điểm A(1; 3)
2) f(x) = x4 – 3x2 + và tiếp tuyến đi qua điểm B(0; )
3) f(x) = x + và tiếp tuyến di qua điểm C(0; 1)
Bài 18.
1) Cho hàm số y = x + (C). Chứng minh rằng qua điểm A(1; -1) kẻ được hai tiếp tuyến tới đồ thị và hai tiếp tuyến đó vuông góc với nhau.
2) Tìm m để từ M(m; 0) kẻ được hai tiếp tuyến với đồ thị hàm số y = sao cho hai tiếp điểm nằm về hai phía của trục Ox.
File đính kèm:
- Chuyen de DAO HAM 11.doc