. Tập hợp N các số tự nhiên
- Tập hợp N, N*.
- Ghi và đọc số tự nhiên. Hệ thập phân, các chữ số La Mã.
- Các tính chất của phép cộng, trừ, nhân trong N.
- Phép chia hết, phép chia có dư.
- Luỹ thừa với số mũ tự nhiên.
32 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1146 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Chuẩn kiến thức kỹ năng Toán THCS, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
lớp 6
Chủ đề
Mức độ cần đạt
Ghi chú
I. Ôn tập và bổ túc về số tự nhiên
1. Khái niệm về tập hợp, phần tử.
Về kỹ năng:
- Biết dùng các thuật ngữ tập hợp, phần tử của tập hợp.
- Sử dụng đúng các kí hiệu ẻ, ẽ, è, ặ.
- Đếm đúng số phần tử của một tập hợp hữu hạn.
Ví dụ. Cho A = {3; 7}, B = {1; 3; 7}.
a) Điền các kí hiệu thích hợp (ẻ, ẽ, è) vào ô vuông: 3 A, 5 A, A B.
b) Tập hợp B có bao nhiêu phần tử ?
2. Tập hợp N các số tự nhiên
- Tập hợp N, N*.
- Ghi và đọc số tự nhiên. Hệ thập phân, các chữ số La Mã.
- Các tính chất của phép cộng, trừ, nhân trong N.
- Phép chia hết, phép chia có dư.
- Luỹ thừa với số mũ tự nhiên.
Về kiến thức:
Biết tập hợp các số tự nhiên và tính chất các phép tính trong tập hợp các số tự nhiên.
Về kỹ năng:
- Đọc và viết được các số tự nhiên đến lớp tỉ.
- Sắp xếp được các số tự nhiên theo thứ tự tăng hoặc giảm.
- Sử dụng đúng các kí hiệu: =, ạ, >, <, ³, Ê.
- Đọc và viết được các số La Mã từ 1 đến 30.
- Làm được các phép tính cộng, trừ, nhân, chia hết với các số tự nhiên.
- Hiểu và vận dụng được các tính chất giao hoán, kết hợp, phân phối trong tính toán.
- Tính nhẩm, tính nhanh một cách hợp lí.
- Làm được các phép chia hết và phép chia có dư trong trường hợp số chia không quá ba chữ số.
- Thực hiện được các phép nhân và chia các luỹ thừa cùng cơ số (với số mũ tự nhiên).
- Sử dụng được máy tính bỏ túi để tính toán.
- Bao gồm thực hiện đúng thứ tự các phép tính, việc đưa vào hoặc bỏ các dấu ngoặc trong các tính toán.
- Nhấn mạnh việc rèn luyện cho học sinh ý thức về tính hợp lí của lời giải. Chẳng hạn học sinh biết được vì sao phép tính 32 ´ 47 = 404 là sai.
- Bao gồm cộng, trừ nhẩm các số có hai chữ số; nhân, chia nhẩm một số có hai chữ số với một số có một chữ số.
- Quan tâm rèn luyện cách tính toán hợp lí. Chẳng hạn:
13 + 96 + 87 = 13 + 87 + 96 = 196.
- Không yêu cầu học sinh thực hiện những dãy tính cồng kềnh, phức tạp khi không cho phép sử dụng máy tính bỏ túi.
3. Tính chất chia hết trong tập hợp N
- Tính chất chia hết của một tổng.
- Các dấu hiệu chia hết cho 2; 5; 3; 9.
- Ước và bội.
- Số nguyên tố, hợp số, phân tích một số ra thừa số nguyên tố.
- Ước chung, ƯCLN; bội chung, BCNN.
Về kiến thức:
Biết các khái niệm: ước và bội, ước chung và ƯCLN, bội chung và BCNN, số nguyên tố và hợp số.
Về kỹ năng:
- Vận dụng các dấu hiệu chia hết để xác định một số đã cho có chia hết cho 2; 5; 3; 9 hay không.
- Phân tích được một hợp số ra thừa số nguyên tố trong những trường hợp đơn giản.
- Tìm được các ước, bội của một số, các ước chung, bội chung đơn giản của hai hoặc ba số.
- Tìm được BCNN, ƯCLN của hai số trong những trường hợp đơn giản.
Nhấn mạnh đến việc rèn luyện kỹ năng tìm ước và bội của một số, ước chung, ƯCLN, bội chung, BCNN của hai số (hoặc ba số trong những trường hợp đơn giản).
Ví dụ. Không thực hiện phép chia, hãy cho biết số dư trong phép chia 3744 cho 2, cho 5, cho 3, cho 9.
Ví dụ. Phân tích các số 95, 63 ra thừa số nguyên tố.
Ví dụ.
a) Tìm hai ước và hai bội của 33, của 54.
b) Tìm hai bội chung của 33 và 54.
Ví dụ. Tìm ƯCLN và BCNN của 18 và 30.
II. Số nguyên
- Số nguyên âm. Biểu diễn các số nguyên trên trục số.
- Thứ tự trong tập hợp Z. Giá trị tuyệt đối.
- Các phép cộng, trừ, nhân trong tập hợp Z và tính chất của các phép toán.
- Bội và ước của một số nguyên.
Về kiến thức:
- Biết các số nguyên âm, tập hợp các số nguyên bao gồm các số nguyên dương, số 0 và các số nguyên âm.
- Biết khái niệm bội và ước của một số nguyên.
Về kỹ năng:
- Biết biểu diễn các số nguyên trên trục số.
- Phân biệt được các số nguyên dương, các số nguyên âm và số 0.
- Vận dụng được các quy tắc thực hiện các phép tính, các tính chất của các phép tính trong tính toán.
- Tìm và viết được số đối của một số nguyên, giá trị tuyệt đối của một số nguyên.
- Sắp xếp đúng một dãy các số nguyên theo thứ tự tăng hoặc giảm.
- Làm được dãy các phép tính với các số nguyên.
Biết được sự cần thiết có các số nguyên âm trong thực tiễn và trong toán học.
Ví dụ. Cho các số 2, 5, - 6, - 1, -18, 0.
a) Tìm các số nguyên âm, các số nguyên dương trong các số đó.
b) Sắp xếp các số đã cho theo thứ tự tăng dần.
c) Tìm số đối của từng số đã cho.
Ví dụ. Thực hiện các phép tính:
a) (- 3 + 6) . (- 4)
b) (- 5 - 13) : (- 6)
Ví dụ. a) Tìm 5 bội của -2.
b) Tìm các ước của 10.
III. Phân số
- Phân số bằng nhau.
- Tính chất cơ bản của phân số.
- Rút gọn phân số, phân số tối giản.
- Quy đồng mẫu số nhiều phân số.
- So sánh phân số.
- Các phép tính về phân số.
- Hỗn số. Số thập phân. Phần trăm.
- Ba bài toán cơ bản về phân số.
- Biểu đồ phần trăm.
Về kiến thức:
- Biết khái niệm phân số: với a ẻ Z, b ẻZ (b ạ 0).
- Biết khái niệm hai phân số bằng nhau : nếu ad = bc (bd 0).
- Biết các khái niệm hỗn số, số thập phân, phần trăm.
Về kỹ năng:
- Vận dụng được tính chất cơ bản của phân số trong tính toán với phân số.
- Biết tìm phân số của một số cho trước.
- Biết tìm một số khi biết giá trị một phân số của nó.
- Biết tìm tỉ số của hai số.
- Làm đúng dãy các phép tính với phân số và số thập phân trong trường hợp đơn giản.
- Biết vẽ biểu đồ phần trăm dưới dạng cột, dạng ô vuông và nhận biết được biểu đồ hình quạt.
Ví dụ.
a) Tìm của -8,7.
b) Tìm một số biết của nó bằng 31,08.
Tính tỉ số của và 75.
d) Tính
1. (0,5)2. 3 +: 1
Không yêu cầu vẽ biểu đồ hình quạt.
IV. Đoạn thẳng
1. Điểm. Đường thẳng.
- Ba điểm thẳng hàng.
- Đường thẳng đi qua hai điểm.
Về kiến thức:
- Biết các khái niệm điểm thuộc đường thẳng, điểm không thuộc đường thẳng.
- Biết các khái niệm hai đường thẳng trùng nhau, cắt nhau, song song.
- Biết các khái niệm ba điểm thẳng hàng, ba điểm không thẳng hàng.
- Biết khái niệm điểm nằm giữa hai điểm.
Về kỹ năng:
- Biết dùng các ký hiệu ẻ, ẽ.
- Biết vẽ hình minh hoạ các quan hệ: điểm thuộc hoặc không thuộc đường thẳng.
Ví dụ. Học sinh biết nhiều cách diễn đạt cùng một nội dung:
a) Điểm A thuộc đường thẳng a, điểm A nằm trên đường thẳng a, đường thẳng a đi qua điểm A.
b) Điểm B không thuộc đường thẳng a, điểm B nằm ngoài đường thẳng a, đường thẳng a không đi qua điểm B.
Ví dụ. Vẽ ba điểm thẳng hàng và chỉ ra điểm nào nằm giữa hai điểm còn lại.
Ví dụ. Vẽ hai điểm A, B, đường thẳng a đi qua A nhưng không đi qua B. Điền các ký hiệu ẻ, ẽ thích hợp vào ô trống:
A a, B a.
2. Tia. Đoạn thẳng. Độ dài đoạn thẳng. Trung điểm của đoạn thẳng.
Về kiến thức:
- Biết các khái niệm tia, đoạn thẳng.
- Biết các khái niệm hai tia đối nhau, hai tia trùng nhau.
- Biết khái niệm độ dài đoạn thẳng.
- Hiểu và vận dụng được đẳng thức AM + MB = AB để giải các bài toán đơn giản.
- Biết khái niệm trung điểm của đoạn thẳng.
Về kỹ năng:
- Biết vẽ một tia, một đoạn thẳng. Nhận biết được một tia, một đoạn thẳng trong hình vẽ.
- Biết dùng thước đo độ dài để đo đoạn thẳng.
- Biết vẽ một đoạn thẳng có độ dài cho trước.
- Vận dụng được đẳng thức
AM + MB = AB
để giải các bài toán đơn giản.
- Biết vẽ trung điểm của một đoạn thẳng.
Ví dụ. Học sinh biết dùng các thuật ngữ:: đoạn thẳng này bằng (lớn hơn, bé hơn) đoạn thẳng kia.
Ví dụ. Cho biết điểm M nằm giữa hai điểm A, B và AM = 3cm, AB = 5cm.
a) MB bằng bao nhiêu? Vì sao?
b) Vẽ hình minh hoạ.
Ví dụ. Học sinh biết xác định trung điểm của đoạn thẳng bằng cách gấp hình hoặc dùng thước đo độ dài.
V. Góc
1. Nửa mặt phẳng. Góc. Số đo góc. Tia phân giác của một góc.
Về kiến thức:
- Biết khái niệm nửa mặt phẳng.
- Biết khái niệm góc.
- Hiểu các khái niệm: góc vuông, góc nhọn, góc tù, góc bẹt, hai góc kề nhau, hai góc bù nhau.
- Biết khái niệm số đo góc.
- Hiểu được: nếu tia Oy nằm giữa hai tia Ox, Oz thì :
xOy + yOz = xOz
để giải các bài toán đơn giản.
- Hiểu khái niệm tia phân giác của góc.
Về kỹ năng:
- Biết vẽ một góc. Nhận biết được một góc trong hình vẽ.
- Biết dùng thước đo góc để đo góc.
- Biết vẽ một góc có số đo cho trước.
- Biết vẽ tia phân giác của một góc.
Ví dụ. Học sinh biết dùng các thuật ngữ: góc này bằng (lớn hơn, bé hơn) góc kia.
Ví dụ. Cho biết tia Ot nằm giữa hai tia Ox, Oy và xOt = 30°, xOy = 70°.
a) Góc tOy bằng bao nhiêu? Vì sao?
b) Vẽ hình minh hoạ.
Ví dụ. Học sinh biết xác định tia phân giác của một góc bằng cách gấp hình hoặc dùng thước đo góc.
2. Đường tròn. Tam giác.
Về kiến thức:
- Biết các khái niệm đường tròn, hình tròn, tâm, cung tròn, dây cung, đường kính, bán kính.
- Nhận biết được các điểm nằm trên, bên trong, bên ngoài đường tròn.
- Biết khái niệm tam giác.
- Hiểu được các khái niệm đỉnh, cạnh, góc của tam giác.
- Nhận biết được các điểm nằm bên trong, bên ngoài tam giác.
Về kỹ năng:
- Biết dùng com pa để vẽ đường tròn, cung tròn. Biết gọi tên và ký hiệu đường tròn.
- Biết vẽ tam giác. Biết gọi tên và ký hiệu tam giác.
- Biết đo các yếu tố (cạnh, góc) của một tam giác cho trước.
Ví dụ. Học sinh biết dùng com pa để so sánh hai đoạn thẳng.
Ví dụ. Cho điểm O. Hãy vẽ đường tròn
(O; 2cm).
Ví dụ. Học sinh biết dùng thước thẳng, thước đo độ dài và com pa để vẽ một tam giác khi biết độ dài ba cạnh của nó.
lớp 7
Chủ đề
Mức độ cần đạt
Ghi chú
I. Số hữu tỉ. Số thực
1. Tập hợp Q các số hữu tỉ.
- Khái niệm số hữu tỉ.
- Biểu diễn số hữu tỉ trên trục số.
- So sánh các số hữu tỉ.
- Các phép tính trong Q: cộng, trừ, nhân, chia số hữu tỉ. Lũy thừa với số mũ tự nhiên của một số hữu tỉ.
Về kiến thức:
Biết được số hữu tỉ là số viết được dưới dạng với .
Về kỹ năng:
- Thực hiện thành thạo các phép tính về số hữu tỉ.
- Biết biểu diễn một số hữu tỉ trên trục số, biểu diễn một số hữu tỉ bằng nhiều phân số bằng nhau.
- Biết so sánh hai số hữu tỉ.
- Giải được các bài tập vận dụng quy tắc các phép tính trong Q.
Ví dụ.
a) = = = = - 0,5.
b) 0,6 = = = .
2. Tỉ lệ thức.
- Tỉ số, tỉ lệ thức.
- Các tính chất của tỉ lệ thức và tính chất của dãy tỉ số bằng nhau.
Về kỹ năng:
Biết vận dụng các tính chất của tỉ lệ thức và của dãy tỉ số bằng nhau để giải các bài toán dạng: tìm hai số biết tổng (hoặc hiệu) và tỉ số của chúng.
Ví dụ. Tìm hai số x và y biết:
3x = 7y và x - y = -16.
Không yêu cầu học sinh chứng minh các tính chất của tỉ lệ thức và dãy các tỉ số bằng nhau.
3. Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn. Làm tròn số.
Về kiến thức:
- Nhận biết được số thập phân hữu hạn, số thập phân vô hạn tuần hoàn.
- Biết ý nghĩa của việc làm tròn số.
Về kỹ năng:
Vận dụng thành thạo các quy tắc làm tròn số.
Không đề cập đến các khái niệm sai số tuyệt đối, sai số tương đối, các phép toán về sai số.
4. Tập hợp số thực R.
- Biểu diễn một số hữu tỉ dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn.
- Số vô tỉ (số thập phân vô hạn không tuần hoàn). Tập hợp số thực. So sánh các số thực
- Khái niệm về căn bậc hai của một số thực không âm.
Về kiến thức:
- Biết sự tồn tại của số thập phân vô hạn không tuần hoàn và tên gọi của chúng là số vô tỉ.
- Nhận biết sự tương ứng 1 - 1 giữa tập hợp R và tập các điểm trên trục số, thứ tự của các số thực trên trục số.
- Biết khái niệm căn bậc hai của một số không âm. Sử dụng đúng kí hiệu .
Về kỹ năng:
- Biết cách viết một số hữu tỉ dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn.
- Biết sử dụng bảng số, máy tính bỏ túi để tìm giá trị gần đúng của căn bậc hai của một số thực không âm.
Ví dụ. Viết các phân số , , dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn.
- Tập hợp số thực bao gồm tất cả các số hữu tỉ và vô tỉ.
Ví dụ. Học sinh có thể phát biểu được rằng mỗi số thực được biểu diễn bởi một điểm trên trục số và ngược lại.
Ví dụ. ằ1,41; ằ1,73.
II. Hàm số và đồ thị
1. Đại lượng tỉ lệ thuận.
- Định nghĩa.
- Tính chất.
- Giải toán về đại lượng tỉ lệ thuận.
Về kiến thức:
- Biết công thức của đại lượng tỉ lệ thuận: y = ax (a ạ 0).
- Biết tính chất của đại lượng tỉ lệ thuận:
= = a; = .
Về kỹ năng:
Giải được một số dạng toán đơn giản về tỉ lệ thuận.
- Học sinh tìm được các ví dụ thực tế của đại lượng tỉ lệ thuận.
- Học sinh có thể giải thành thạo bài toán: Chia một số thành các các phần tỉ lệ với các số cho trước.
2. Đại lượng tỉ lệ nghịch.
- Định nghĩa.
- Tính chất.
- Giải toán về đại lượng tỉ lệ nghịch.
Về kiến thức:
- Biết công thức của đại lượng tỉ lệ nghịch: y = (a ạ 0).
- Biết tính chất của đại lượng tỉ lệ nghịch:
x1y1 = x2y2 = a; = .
Về kỹ năng:
- Giải được một số dạng toán đơn giản về tỉ lệ nghịch.
Học sinh tìm được các ví dụ thực tế của đại lượng tỉ lệ nghịch.
Ví dụ. Một người chạy từ A đến B hết 20 phút. Hỏi người đó chạy từ B về A hết bao nhiêu phút nếu vận tốc chạy về bằng 0,8 lần vận tốc chạy đi.
Ví dụ. Thùng nước uống trên tàu thuỷ dự định để 15 người uống trong 42 ngày. Nếu chỉ có 9 người trên tàu thì dùng được bao lâu ?
3. Khái niệm hàm số và đồ thị.
- Định nghĩa hàm số.
- Mặt phẳng toạ độ.
- Đồ thị của hàm số y = ax (a ạ 0).
- Đồ thị của hàm số y = (a ạ 0).
Về kiến thức:
- Biết khái niệm hàm số và biết cách cho hàm số bằng bảng và công thức.
- Biết khái niệm đồ thị của hàm số.
- Biết dạng của đồ thị hàm số y = ax (a ạ 0).
- Biết dạng của đồ thị hàm số y = (a ạ 0).
Về kỹ năng:
- Biết cách xác định một điểm trên mặt phẳng toạ độ khi biết toạ độ của nó và biết xác định toạ độ của một điểm trên mặt phẳng toạ độ.
- Vẽ thành thạo đồ thị của hàm số y = ax (a ạ 0).
- Biết tìm trên đồ thị giá trị gần đúng của hàm số khi cho trước giá trị của biến số và ngược lại.
Không yêu cầu vẽ đồ thị của hàm số y = (a ạ 0).
III. Biểu thức đại số
- Khái niệm biểu thức đại số, giá trị của một biểu thức đại số.
- Khái niệm đơn thức, đơn thức đồng dạng, các phép toán cộng, trừ, nhân các đơn thức.
Về kiến thức:
- Biết các khái niệm đơn thức, bậc của đơn thức một biến.
- Biết các khái niệm đa thức nhiều biến, đa thức một biến, bậc của một đa thức một biến.
Ví dụ. Tính giá trị của biểu thức x2y3 + xy tại x = 1 và y = .
- Khái niệm đa thức nhiều biến. Cộng và trừ đa thức.
- Đa thức một biến. Cộng và trừ đa thức một biến.
- Nghiệm của đa thức một biến.
- Biết khái niệm nghiệm của đa thức một biến.
Về kỹ năng:
- Biết cách tính giá trị của một biểu thức đại số.
- Biết cách xác định bậc của một đơn thức, biết nhân hai đơn thức, biết làm các phép cộng và trừ các đơn thức đồng dạng.
- Biết cách thu gọn đa thức, xác định bậc của đa thức.
- Biết tìm nghiệm của đa thức một biến bậc nhất.
Ví dụ. Tìm nghiệm của các đa thức f(x) = 2x + 1, g(x) = 1 - 3x.
IV. Thống kê
- Thu thập các số liệu thống kê. Tần số.
Về kiến thức:
- Biết các khái niệm: Số liệu thống kê, tần số.
Ví dụ. Hãy thực hiện những việc sau đây:
a) Ghi điểm kiểm tra về toán cuối học kì I của mỗi học sinh trong lớp.
- Bảng tần số và biểu đồ tần số (biểu đồ đoạn thẳng hoặc biểu đồ hình cột).
- Số trung bình cộng; mốt của dấu hiệu.
-- Biết bảng tần số, biểu đồ đoạn thẳng hoặc biểu đồ hình cột tương ứng.
Về kỹ năng:
- Hiểu và vận dụng được các số trung bình cộng, mốt của dấu hiệu trong các tình huống thực tế.
- Biết cách thu thập các số liệu thống kê.
- Biết cách trình bày các số liệu thống kê bằng bảng tần số, bằng biểu đồ đoạn thẳng hoặc biểu đồ hình cột tương ứng.
b) Lập bảng tần số và biểu đồ đoạn thẳng tương ứng.
c) Nêu nhận xét khi sử dụng bảng (hoặc biểu đồ) tần số đã lập được (số các giá trị của dấu hiệu; số các giá trị khác nhau; giá trị lớn nhất, giá trị nhỏ nhất; giá trị có tần số lớn nhất; các giá trị thuộc khoảng nào là chủ yếu).
d) Tính số trung bình cộng của các số liệu thống kê.
V. Đường thẳng vuông góc. Đường thẳng song song.
1. Góc tạo bởi hai đường thẳng cắt nhau. Hai góc đối đỉnh. Hai đường thẳng vuông góc.
Về kiến thức:
- Biết khái niệm hai góc đối đỉnh.
- Biết các khái niệm góc vuông, góc nhọn, góc tù.
- Biết khái niệm hai đường thẳng vuông góc.
Về kỹ năng:
- Biết dùng êke vẽ đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
Ví dụ. Vẽ hai đường thẳng cắt nhau. Hãy:
a) Đo góc tạo bởi hai đường thẳng cắt nhau.
b) Chỉ ra hai góc đối đỉnh.
c) Chứng tỏ rằng hai góc đối đỉnh thì bằng nhau.
2. Góc tạo bởi một đường thẳng cắt hai đường thẳng. Hai đường thẳng song song. Tiên đề Ơ-clít về đường thẳng song song. Khái niệm định lí, chứng minh một định lí.
Về kiến thức:
- Biết tiên đề Ơ-clít.
- Biết các tính chất của hai đường thẳng song song.
- Biết thế nào là một định lí và chứng minh một định lí.
Về kỹ năng:
- Biết và sử dụng đúng tên gọi của các góc tạo bởi một đường thẳng cắt hai đường thẳng: góc so le trong, góc đồng vị, góc trong cùng phía, góc ngoài cùng phía.
- Biết dùng êke vẽ đường thẳng song song với một đường thẳng cho trước đi qua một điểm cho trước nằm ngoài đường thẳng đó (hai cách).
Ví dụ. Vẽ một đường thẳng cắt hai đường thẳng và chỉ ra các cặp góc so le trong, các cặp góc đồng vị.
Ví dụ. Dùng êke vẽ hai đường thẳng cùng vuông góc với một đường thẳng thứ ba.
Ví dụ. Dùng êke vẽ hai đường thẳng cắt một đường thẳng tạo thành một cặp góc so le trong bằng góc nhọn của êke.
VI. Tam giác
1. Tổng ba góc của một tam giác.
Về kiến thức:
- Biết định lí về tổng ba góc của một tam giác.
- Biết định lí về góc ngoài của một tam giác.
Về kỹ năng:
Vận dụng các định lí trên vào việc tính số đo các góc của tam giác.
Ví dụ. Cho tam giác ABC có . Tia phân giác của góc A cắt BC ở D. Tính ADC và ADB
2. Hai tam giác bằng nhau.
Về kiến thức:
- Biết khái niệm hai tam giác bằng nhau.
- Biết các trường hợp bằng nhau của tam giác.
Về kỹ năng:
- Biết cách xét sự bằng nhau của hai tam giác.
- Biết vận dụng các trường hợp bằng nhau của tam giác để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau.
Ví dụ. Cho góc xAy. Lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh rằng BC = DE.
3. Các dạng tam giác đặc biệt.
- Tam giác cân. Tam giác đều.
- Tam giác vuông. Định lí Py-ta-go. Hai trường hợp bằng nhau của tam giác vuông.
Về kiến thức:
- Biết các khái niệm tam giác cân, tam giác đều.
- Biết các tính chất của tam giác cân, tam giác đều.
Ví dụ. Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC (H ẻ BC). Cho biết AB = 13cm, AH = 12cm, HC = 16cm. Tính các độ dài AC, BC.
- Biết các trường hợp bằng nhau của tam giác vuông.
Về kỹ năng:
- Vận dụng được định lí Py-ta-go vào tính toán.
- Biết vận dụng các trường hợp bằng nhau của tam giác vuông để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau.
Ví dụ. Cho tam giác ABC cân tại A ( < 90°). Vẽ BH ^ AC (H ẻ AC), CK ^ AB (K ẻ AB).
a) Chứng minh rằng AH = AK.
b) Gọi I là giao điểm của BH và CK. Chứng minh rằng AI là tia phân giác của góc A.
VII. Quan hệ giữa các yếu tố trong tam giác. Các đường đồng quy của tam giác.
1. Quan hệ giữa các yếu tố trong tam giác.
- Quan hệ giữa góc và cạnh đối diện trong một tam giác.
- Quan hệ giữa ba cạnh của một tam giác.
Về kiến thức:
- Biết quan hệ giữa góc và cạnh đối diện trong một tam giác.
- Biết bất đẳng thức tam giác.
Về kỹ năng:
- Biết vận dụng các mối quan hệ trên để giải bài tập.
Ví dụ. Chứng minh rằng trong một tam giác vuông, cạnh huyền lớn hơn mỗi cạnh góc vuông.
2. Quan hệ giữa đường vuông góc và đường xiên, giữa đường xiên và hình chiếu của nó.
Về kiến thức:
- Biết các khái niệm đường vuông góc, đường xiên, hình chiếu của đường xiên, khoảng cách từ một điểm đến một đường thẳng.
- Biết quan hệ giữa đường vuông góc và đường xiên, giữa đường xiên và hình chiếu của nó.
Về kỹ năng:
Biết vận dụng các mối quan hệ trên để giải bài tập.
Ví dụ. Chứng minh rằng trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó:
a) Đường xiên nào có hình chiếu lớn hơn thì lớn hơn.
b) Đường xiên nào lớn hơn thì có hình chiếu lớn hơn.
3. Các đường đồng quy của tam giác.
- Các khái niệm đường trung tuyến, đường phân giác, đường trung trực, đường cao của một tam giác.
- Sự đồng quy của ba đường trung tuyến, ba đường phân giác, ba đường trung trực, ba đường cao của một tam giác.
Về kiến thức:
- Biết các khái niệm đường trung tuyến, đường phân giác, đường trung trực, đường cao của một tam giác.
- Biết các tính chất của tia phân giác của một góc, đường trung trực của một đoạn thẳng.
Về kỹ năng:
- Vận dụng được các định lí về sự đồng quy của ba đường trung tuyến, ba đường phân giác, ba đường trung trực, ba đường cao của một tam giác để giải bài tập.
- Biết chứng minh sự đồng quy của ba đường phân giác, ba đường trung trực.
Không yêu cầu chứng minh sự đồng quy của ba đường trung tuyến, ba đường cao.
lớp 8
Chủ đề
Mức độ cần đạt
Ghi chú
I. Nhân và chia đa thức
1. Nhân đa thức
- Nhân đơn thức với đa thức.
- Nhân đa thức với đa thức.
- Nhân hai đa thức đã sắp xếp.
Về kỹ năng:
Vận dụng được tính chất phân phối của phép nhân:
A(B + C) = AB + AC
(A + B)(C + D) = AC + AD + BC + BD,
trong đó: A, B, C, D là các số hoặc các biểu thức đại số.
- Đưa ra các phép tính từ đơn giản đến mức độ không quá khó đối với học sinh nói chung. Các biểu thức đưa ra chủ yếu có hệ số không quá lớn, có thể tính nhanh, tính nhẩm được.
Ví dụ. Thực hiện phép tính:
a) 4x2 (5x3 + 3x - 1);
b) (5x2 - 4x)(x - 2);
c) (3x + 4x2 - 2)( -x2 +1 + 2x).
- Không nên đưa ra phép nhân các đa thức có số hạng tử quá 3.
- Chỉ đưa ra các đa thức có hệ số bằng chữ (a, b, c, …) khi thật cần thiết.
2. Các hằng đẳng thức đáng nhớ
- Bình phương của một tổng. Bình phương của một hiệu.
- Hiệu hai bình phương.
- Lập phương của một tổng. Lập phương của một hiệu.
- Tổng hai lập phương. Hiệu hai lập phương.
Về kỹ năng:
Hiểu và vận dụng được các hằng đẳng thức:
(A ± B)2 = A2 ± 2AB + B2,
A2 - B2 = (A + B) (A - B),
(A ± B)3 = A3 ± 3A2B + 3AB2 ± B3,
A3 + B3 = (A + B) (A2 - AB + B2),
A3 - B3 = (A - B) (A2 + AB + B2),
trong đó: A, B là các số hoặc các biểu thức đại số.
- Các biểu thức đưa ra chủ yếu có hệ số không quá lớn, có thể tính nhanh, tính nhẩm được.
Ví dụ. a) Thực hiện phép tính:
(x2 - 2xy + y2)(x - y).
b) Rút gọn rồi tính giá trị của biểu thức
(x2 - xy + y2)(x + y) - 2y3 tại x = và y = .
- Khi đưa ra các phép tính có sử dụng các hằng đẳng thức thì hệ số của các đơn thức thường là số nguyên.
3. Phân tích đa thức thành nhân tử
- Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.
- Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.
- Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
- Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp.
Về kỹ năng:
Vận dụng được các phương pháp cơ bản phân tích đa thức thành nhân tử:
+ Phương pháp đặt nhân tử chung.
+ Phương pháp dùng hằng đẳng thức.
+ Phương pháp nhóm hạng tử.
+ Phối hợp các phương pháp phân tích thành nhân tử ở trên.
Các bài tập đưa ra từ đơn giản đến phức tạp và mỗi biểu thức thường không có quá hai biến.
Ví dụ. Phân tích các đa thức sau thành nhân tử:
1) 15x2y + 20xy2 - 25xy.
2)
1 - 2y + y2;
27 + 27x + 9x2 + x3;
8 - 27x3;
1 - 4x2;
(x + y)2 - 25;
3)
4x2 + 8xy - 3x - 6y;
2x2 + 2y2 - x2z + z - y2z - 2.
4)
3x2 - 6xy + 3y2;
16x3 + 54y3;
x2 - 2xy + y2 - 16;
x6 - x4 + 2x3 + 2x2.
4. Chia đa thức.
- Chia đơn thức cho đơn thức.
- Chia đa thức cho đơn thức.
- Chia hai đa thức đã sắp xếp.
Về kỹ năng:
- Vận dụng được quy tắc chia đơn thức cho đơn thức, chia đa thức cho đơn thức.
- Vận dụng được quy tắc chia hai đa thức một biến đã sắp xếp.
- Đối với đa thức nhiều biến, chỉ đưa ra các bài tập mà các hạng tử của đa thức bị chia chia hết cho đơn thức chia.
Ví dụ . Làm phép chia :
(15x2y3 - 12x3y2) : 3xy.
- Không nên đưa ra trường hợp số hạng tử của đa thức chia nhiều hơn ba.
- Chỉ nên đưa ra các bài tập về phép chia hết là chủ yếu.
Ví dụ . Làm phép chia :
(x4 -2x3 +4x2 -8x) : (x2 + 4)
II. Phân thức đại số
1. Định nghĩa. Tính chất cơ bản của phân thức. Rút gọn phân thức. Quy đồng mẫu thức nhiều phân thức.
Về kiến thức:
Hiểu các định nghĩa: Phân thức đại số, hai phân thức bằng nhau.
Về kỹ năng:
Vận dụng được tính chất cơ bản của phân thức để rút gọn phân thức và quy đồng mẫu thức các phân thức.
- Rút gọn các phân thức mà tử và mẫu có dạng tích chứa nhân tử chung. Nếu phải biến đổi thì việc biến đổi thành nhân tử không mấy khó khăn.
Ví dụ. Rút gọn các phân thức:
; ;
; .
- Quy đồng mẫu các phân thức có mẫu chung không quá ba nhân tử. Nếu mẫu là các đơn thức thì cũng chỉ đưa ra nhiều nhất là ba biến.
2. Cộng và trừ các phân thức đại số
- Phép cộng các phân thức đại số.
- Phép trừ các phân thức đại số.
Về kiến thức:
Biết khái niệm phân thức đối của phân thức (B ạ 0) (là phân thức và được kí hiệu là -).
Về kỹ năng:
Vận dụng được các quy tắc cộng, trừ các phân thức đại số (các phân thức cùng mẫu và các phân thức không cùng mẫu).
- Chủ yếu đưa ra các ph
File đính kèm:
- chuan kien thuc ky nang toan thcs.doc