Đề kiểm tra giữa học kì I môn Toán Lớp 12 - Mã đề: 110 - Năm học 2018-2019 - Trường THCS & THPT Lương Thế Vinh (Có đáp án)

pdf6 trang | Chia sẻ: Khánh Linh 99 | Ngày: 09/04/2025 | Lượt xem: 8 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề kiểm tra giữa học kì I môn Toán Lớp 12 - Mã đề: 110 - Năm học 2018-2019 - Trường THCS & THPT Lương Thế Vinh (Có đáp án), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ KIỂM TRA GIỮA HỌC KỲ 1 Tr÷íng THCS-THPT L÷ìng Th¸ Vinh Năm học 2018-2019 Đề thi cĩ 5 trang Mỉn: To¡n Lỵp: 12 Mã đề thi 110 Thời gian làm bài: 90 phút (50 câu trắc nghiệm) 3 2p Câu 1. Cho loga b = 3; loga c = −2. Khi đĩ loga (a b c) bằng A. 13. B. 5. C. 8. D. 10. Câu 2. Tínhp thể tích V của khốip lăng trụ tam giác đều cĩ tất cả các cạnh bằngp a. a3 2 a3 3 a3 3 A. V = . B. V = . C. V = a3. D. V = . 12 4 12 1 Câu 3. Cho hàm số y = x3 + x2 − 2x + 1 cĩ đồ thị là (C). Phương trình tiếp tuyến của (C) 3  1 tại điểm M 1; là 3 2 2 A. y = 3x − 2. B. y = −3x + 2. C. y = x − . D. y = −x + . 3 3 2 Câu 4. Tìm tập xác định của hàm số y = log2018(3x − x ). A. D = R. B. D = (0; +1). C. D = (−∞; 0) [ (3; +1). D. D = (0; 3). 1 Câu 5. Tìm m để hàm số f(x) = x3 + mx2 + (m2 − 4)x đạt cực đại tại x = 1. 3 A. m = 1; m = −3. B. m = 1. C. m = −3. D. m = 3. Câu 6. 3 y Đồ thị đã cho là của hàm số nào? 2 A. y = x4 − 2x2 + 2. B. y = x4 + 2x2 − 2. 4 2 4 2 C. y = −x − 2x + 2. D. y = −x + 2x + 2. x −1 0 1 Câu 7. Cho hàm số y = f(x) cĩ bảng biến thiên như hình bên. Hàm số y = f(x) là hàm x −∞ −1 f 0 1 +1 số nào trong các hàm sau đây? 0 A. y = −x4 + 2x2 − 3. y − 0 + 0 − 0 + 1 B. y = − x4 + 3x2 − 3. +1 −3 +1 4 y C. y = x4 + 2x2 − 3. D. y = x4 − 2x2 − 3. −4 −4 Câu 8. y cx bx ax Cho đồ thị của ba hàm số y = ax; y = bx và y = cx như hình vẽ bên. Khẳng định nào sau đây đúng? A. b > a > c. B. a > c > b. C. c > a > b. D. c > b > a. x 0 1 Trang 1/5 Mã đề 110 x2 + x + 4 Câu 9. Giá trị nhỏ nhất của hàm số f(x) = trên đoạn [0; 2] bằng x + 1 10 A. 4. B. −5. C. . D. 3. 3 Câu 10. Cho hình chĩp đều S:ABC cĩ đáy ABC là tam giác đều cạnh a, cạnh bên SA = 2a. Tính thể tíchp V của khối chĩp S:ABCp . p p a3 11 a3 11 a3 11 a3 11 A. V = . B. V = . C. V = . D. V = . 6 3 12 4 Câu 11.pĐồ thị hàm số nào dướip đây cĩ tiệm cận ngang? 4 − x2 x − 1 x2 + 1 p A. y = . B. y = . C. y = . D. y = x2 − 1. x x + 1 x Câu 12. Tínhp thể tích V của khốip tứ diện đều cạnh a.p a3 2 a3 2 a3 3 A. V = . B. V = . C. V = . D. V = a3. 12 6 12 Câu 13. x −∞ −1 3 +1 Cho hàm số y = f(x) cĩ bảng biến thiên như hình bên. y0 + 0 − 0 + Số nghiệm của phương trình f(x) − 3 = 0 là 4 +1 A. 3. B. 2. C. 1. D. 0. y −∞ −2 Câu 14. Hình bát diện đều cĩ bao nhiêu cạnh? A. 8. B. 24. C. 16. D. 12. Câu 15. Mặt phẳng (A0BC) chia khối lăng trụ ABC:A0B0C0 thành các khối đa diện nào? A. Một khối chĩp tứ giác và một khối chĩp tam giác. B. Hai khối chĩp tam giác. C. Hai khối chĩp tứ giác. D. Một khối chĩp tam giác và một khối chĩp ngũ giác. Câu 16. x −∞ −1 0 1 +1 Cho hàm số y = f(x) cĩ bảng biến thiên như hình bên. y0 + 0 − 0 + 0 − Hàm số đạt cực tiểu tại điểm nào? 2 2 A. x = 2. B. x = −1. y C. x = 0. D. x = 1. −∞ 1 −∞ Câu 17. Hình vẽ bên là đồ thị của hàm số nào trong các hàm y số dưới đây? 1 − x x − 1 A. y = . B. y = . x x + 1 x x − 1 1 − x C. y = . D. y = . −1 0 1 x x + 1 p Câu 18. Cho khối lăng trụ cĩ đáy là hình vuơng cạnh a 2 và chiều cao bằng 4a. Thể tích của khối lăng trụ đã cho bằng 16a3 A. 8a3. B. . C. 4a3. D. 16a3. 3 Trang 2/5 Mã đề 110 1 1 p Câu 19. Cho biểu thức P = x 2 :x 3 : 6 x với x > 0. Mệnh đề nào dưới đây đúng? 11 7 5 A. P = x. B. P = x 6 . C. P = x 6 . D. P = x 6 . Câu 20. Cho hình chĩp S:ABC cĩ đáy ABC là tam giác đều cạnh a, cạnh bên SA vuơng gĩc với đáy. Tính thể tích khốip chĩp S:ABC biết SB = 2a. p a3 a3 3 a3 a3 3 A. . B. . C. . D. . 2 2 4 4 2x2 − 2x + 3 Câu 21. Đường thẳng d : y = 3x + 1 cắt đồ thị (C) của hàm số y = tại hai x − 1 điểm phânp biệt A; B. Tính độ dàipAB. p p A. AB = 4 15. B. AB = 4 2. C. AB = 4 10. D. AB = 4 6. p x + 3 − 2 Câu 22. Số các tiệm cận đứng của đồ thị hàm số y = là x2 − 1 A. 2. B. 0. C. 3. D. 1. Câu 23. Cho hình chĩp S:ABC cĩ đáy ABC là tam giác vuơng cân tại B và AB = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuơng gĩc với đáy. Tính thể tích V của khối chĩp S:ABC. p p p p a3 3 a3 3 a3 3 2a3 3 A. V = . B. V = . C. V = . D. V = . 4 3 12 3 Câu 24. Cho một khối lập phương cĩ diện tích tồn phần bằng 96cm2. Tính thể tích khối lập phương đã cho. p 32 A. 48 6cm3. B. cm3. C. 96cm3. D. 64cm3. 3 Câu 25. Cho a là số thực dương bất kỳ. Mệnh đề nào dưới đây đúng? A. log5(5a) = log5 a. B. log5(5a) = 1 + a. C. log5(5a) = 1 + log5 a. D. log5(5a) = 5 + log5 a. 2 1 Câu 26. Tìm tập xác định D của hàm số y = (x − 3x + 2) 3 . A. D = (−∞; 1) [ (2; +1). B. D = (−∞; +1). C. D = (−∞; +1) n f1; 2g. D. D = [1; 2]. Câu 27. Tính đạo hàm của hàm số y = 2018x ln x với x > 0.  1  1 A. y0 = 2018x ln 2018 ln x + . B. y0 = 2018x ln 2018. x x  1   1  C. y0 = 2018x ln 2018 + . D. y0 = 2018x ln x + . x x Câu 28. Cho hình lăng trụ ABC:A0B0C0 cĩ đáy là tam giác đều cạnh a, gĩc giữa cạnh bên và mặt phẳng đáy bằng 300. Hình chiếu của A0 xuống (ABC) là trung điểm BC. Tính thể 0 0 0 tích khốip lăng trụ ABC:A B C . p p a3 3 a3 a3 3 a3 3 A. . B. . C. . D. . 8 8 24 4 22018 Câu 29. Số nguyên dương lớn nhất khơng vượt quá A = là 31272 A. 1. B. 6. C. 5. D. 3. Câu 30. Cho hình chĩp đều S:ABC cĩ đáy ABC là tam giác đều cạnh AB = a, gĩc giữa mặt bên với mặt phẳng đáy bằng 600. Tính bán kính mặt cầu đi qua bốn đỉnh của hình chĩp S:ABCp . a 3 7a 7a a A. . B. . C. . D. . 2 12 16 2 a Câu 31. Giá trị lớn nhất của hàm số y = 2 sin2 x − cos x là phân số tối giản cĩ dạng với b a; b là các số nguyên dương. Tìm a − b. A. 8. B. 9. C. 7. D. 10. Trang 3/5 Mã đề 110 Câu 32. Cho hình chĩp S:ABC cĩ thể tích bằng V . Gọi G là trọng tâm tam giác SBC. Mặt phẳng (α) đi qua hai điểm A; G và song song với BC. Mặt phẳng (α) cắt các cạnh SB; SC lần lượt tại các điểm M và N. Thể tích khối chĩp S:AMN bằng V V 4V V A. . B. . C. . D. . 9 2 9 4 Câu 33. Cĩ bao nhiêu số nguyên m để hàm số y = (m2 − 1)x3 + (m − 1)x2 − x + 4 nghịch biến trên R. A. 1. B. 2. C. 3. D. 0. Câu 34. Cho hình chĩp S:ABCD cĩ đáy ABCD là hình chữ nhật với AB = a và AD = 2a, cạnh bên SA vuơng gĩc với đáy. Tính thể tích V của khối chĩp S:ABCD biết gĩc giữa hai 0 mặt phẳngp(SBD) và (ABCD) bằngp 60 . p p a3 15 a3 15 4a3 15 a3 15 A. V = . B. V = . C. V = . D. V = . 15 6 15 3 Câu 35. Tìm tất cả giá trị của tham số m để hàm số y = x3 − 3x2 + mx − 1 đạt cực trị tại 2 2 x1; x2 thỏa mãn x1 + x2 = 6. A. m = −3. B. m = 3. C. m = −1. D. m = 1. Câu 36. Cho hình chĩp S:ABCD cĩ đáy ABCD là hình bình hành. Gọi M; N lần lượt là trung điểm các cạnh SB; SC. Tính thể tích khối chĩp S:AMND biết rằng khối chĩp S:ABCD cĩ thể tích bằng a3. a3 a3 a3 3a3 A. . B. . C. . D. . 4 8 2 8 mx + 1 Câu 37. Tìm tất cả giá trị thực của tham số m để hàm số y = đồng biến trên x + m khoảng (1; +1). A. −1 < m < 1. B. m ≥ 1. C. m 1. D. m > 1. x − 3 Câu 38. Tìm điều kiện của m để đường thẳng y = mx + 1 cắt đồ thị hàm số y = tại x + 1 hai điểm phân biệt. A. (−∞; 0] [ [16; +1). B. (16; +1). C. (−∞; 0). D. (−∞; 0) [ (16; +1). Câu 39. Cho hình chĩp S:ABC cĩ đáy ABC là tam giác vuơng cân tại B và AB = a. Cạnh bên SA vuơng gĩc với mặt phẳng đáy. Đường thẳng SC tạo với mặt đáy một gĩc 600. Tính diện tích mặt cầu đi qua bốn đỉnh của hình chĩp S:ABC. 32a2π 8a2π A. 8a2π. B. . C. . D. 4a2π. 3 3 4 Câu 40. Tìm m để bất phương trình x + ≥ m cĩ nghiệm trên khoảng (−∞; 1). x − 1 A. m ≤ 5. B. m ≤ −3. C. m ≤ 3. D. m ≤ −1. Câu 41. Tìm điều kiện của tham số m để đồ thị hàm số y = mx4 + (m2 − 1)x2 + 1 − 2m cĩ một cực tiểu và hai cực đại. A. m 2 (1; +1). B. m 2 (−∞; −1). C. m 2 (0; 1). D. m 2 (−∞; 0) [ (1; +1). Câu 42. y x 3 2 Cho hàm số y = ax + bx + cx + d cĩ đồ thị như hình 0 bên. Khẳng định nào sau đây đúng? A. a 0; c > 0; d > 0. C. a 0; c 0. D. a 0; c > 0; d < 0. Trang 4/5 Mã đề 110 Câu 43. Với log27 5 = a; log3 7 = b và log2 3 = c, giá trị của log6 35 bằng (3a + b)c (3a + b)c (3a + b)c (3b + a)c A. . B. . C. . D. . 1 + c 1 + b 1 + a 1 + c Câu 44. Cho khối chĩp S:ABCD với đáy ABCD là hình chữ nhật và các cạnh bên bằng 0 0 nhau. Gĩc giữa các mặt phẳng (SAB); (SAD) và mặt phẳng đáy lầnp lượt là 45 và 60 . Tính thể tích khối chĩp S:ABCD biết chiều cao của hình chĩp là a 3. p A. V = 4a3. B. V = 2a3. C. V = 3a3. D. V = 3a3 3. x + 1 Câu 45. Cho hàm số y = . Tìm tất cả các giá trị của tham số m để đồ thị cĩ x2 − 2mx + 4 ba đường tiệm cận. 8 m > 2 8m m < −2  m < −2 A. m > 2. B. 5 . C. . D. . m 6= − 5 m > 2 : 2 >m 6= − : 2 Câu 46. Cho hìnhp chĩp SABC cĩ đáy ABCp là tam giác đều cạnhp 1, biết khoảng cách từ 6 15 30 A đến (SBC) là , từ B đến (SCA) là , từ C đến (SAB) là và hình chiếu vuơng 4 10 20 gĩc của S xuống đáy nằm trong tam giác ABC. Tính thể tích khối chĩp VSABC 1 1 1 1 A. . B. . C. . D. . 36 48 12 24 Câu 47. y Cho hàm số y = f(x). Biết hàm số y = f 0(x) cĩ đồ thị như hình vẽ bên. Hàm số y = f(3 − x2) + 2018 đồng biến trên khoảng nào dưới đây? x A. (−1; 0). B. (2; 3). C. (−2; −1). D. (0; 1). −6 −1 0 2 Câu 48. Cho hình chĩp S:ABC cĩ AC = a, BC = 2a, ACB[ = 1200, cạnh bên SA vuơng gĩc với đáy. Đường thẳng SC tạo với mặt phẳng (SAB) gĩc 300. Tính thể tích của khối chĩp S:ABCp. p p p a3 105 a3 105 a3 105 a3 105 A. . B. . C. . D. . 28 21 42 7 Câu 49. Cho hàm số y = f(x) xác định trên x −∞ 0 1 +1 R n f0g, liên tục trên mỗi khoảng xác định và cĩ bảng biến thiên như hình y0 − + 0 − bên. Cĩ bao nhiêu giá trị nguyên m 2 [−2018; 2018] sao cho phương trình +1 2 jf(x)j = m cĩ ba nghiệm thực phân y biệt? A. 2016. B. 2019. C. 2017. D. 2018. −1 −∞ −∞ Câu 50. Cho hàm số y = jx4 − 2mx2 + 2m − 1j với m là tham số thực. Số giá trị nguyên trong khoảng [−2; 2] của m để hàm số đã cho cĩ 3 điểm cực trị là A. 2. B. 4. C. 3. D. 1. - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 110 ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 110 1.C 2.B 3.C 4.D 5.C 6.D 7.D 8.C 9.D 10.C 11.B 12.A 13.A 14.D 15.A 16.C 17.B 18.A 19.A 20.C 21.C 22.D 23.D 24.D 25.C 26.A 27.A 28.A 29.D 30.B 31.B 32.C 33.B 34.C 35.A 36.D 37.D 38.D 39.A 40.B 41.B 42.D 43.A 44.A 45.C 46.B 47.A 48.C 49.C 50.B Mã đề thi 111 1.C 2.D 3.C 4.D 5.B 6.B 7.D 8.A 9.C 10.C 11.C 12.B 13.B 14.D 15.B 16.A 17.C 18.B 19.B 20.A 21.B 22.A 23.A 24.D 25.C 26.C 27.B 28.D 29.B 30.D 31.B 32.D 33.A 34.B 35.A 36.B 37.D 38.B 39.A 40.C 41.C 42.A 43.C 44.A 45.D 46.B 47.C 48.B 49.D 50.C Mã đề thi 112 1.B 2.A 3.C 4.A 5.D 6.D 7.D 8.B 9.A 10.A 11.A 12.B 13.C 14.C 15.B 16.B 17.C 18.B 19.D 20.C 21.C 22.A 23.C 24.C 25.D 26.B 27.B 28.A 29.C 30.D 31.A 32.A 33.A 34.B 35.D 36.B 37.A 38.D 39.D 40.C 41.B 42.D 43.D 44.B 45.A 46.D 47.C 48.D 49.A 50.A Mã đề thi 113 1.A 2.C 3.B 4.C 5.A 6.A 7.D 8.C 9.A 10.A 11.A 12.D 13.C 14.D 15.C 16.A 17.B 18.C 19.C 20.B 21.A 22.B 23.D 24.C 25.C 26.B 27.A 28.D 29.B 30.A 31.B 32.A 33.B 34.D 35.A 36.B 37.B 38.C 39.B 40.B 41.A 42.B 43.A 44.A 45.A 46.D 47.A 48.D 49.C 50.B 1

File đính kèm:

  • pdfde_kiem_tra_giua_hoc_ki_i_mon_toan_lop_12_ma_de_110_nam_hoc.pdf