Câu I ( 3 điểm)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (2đ)
2. Tìm m để trình có ba nghiệm thực phân biệt (1đ)
Câu II ( 2 điểm)
1. Tính gía trị biểu thức . (1đ)
2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = x(ln x - 2) trên
đoạn [l; e2] (1đ)
Câu III ( 2 điểm) Cho hình chóp S.ABC có SA = 2a và SA (ABC). Tam giác ABC vuông
cân tại B,
1. Tính thể tích khối chóp S.ABC (1đ)
2. Tính bán kính mặt cầu ngoại tiếp hình chóp (1đ)
4 trang |
Chia sẻ: trangtt2 | Ngày: 09/07/2022 | Lượt xem: 316 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề tham khảo Học kì 1 Toán Lớp 12 - Trường THPT Phú Điển (Có đáp án), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỒNG THÁP
TRƯỜNG THPT PHÚ ĐIỀN
ĐỀ THAM KHẢO HỌC KỲ I MÔN TOÁN
KHỐI 12
I. PHẦN CHUNG (7,0 điểm)
Câu I ( 3 điểm)
Khảo sát sự biến thiên và vẽ đồ thị của hàm số (2đ)
Tìm m để trình có ba nghiệm thực phân biệt (1đ)
Câu II ( 2 điểm)
1. Tính gía trị biểu thức . (1đ)
2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = x(ln x - 2) trên
đoạn [l; e2] (1đ)
Câu III ( 2 điểm) Cho hình chóp S.ABC có SA = 2a và SA ^(ABC). Tam giác ABC vuông
cân tại B,
1. Tính thể tích khối chóp S.ABC (1đ)
Tính bán kính mặt cầu ngoại tiếp hình chóp (1đ)
II. PHẦN RIÊNG (3,0 điểm) (Học sinh chọn IVa và Va hay IVb và Vb )
A. Theo chương trình chuẩn.
Câu IVa ( 1 điểm)
Viết phương trình tiếp tuyến của đồ thị hàm số (C) biết tiếp tuyến có hệ số góc bằng 9.
Câu Va ( 2 điểm)
Phương trình mũ (1đ)
Bất phương trình lôgarit 2log3(4x-3) + (1đ)
B. Theo chương trình nâng cao.
Câu IVb ( 1 điểm)
Viết phương trình tiếp tuyến với (c) biết tiếp tuyến vuông góc với đường thẳng
(1đ)
Câu Vb ( 2 điểm)
1.Cho hàm số . Chứng minh rằng (1đ)
2. Cho hàm số .Tìm để hàm số có cưc trị (1đ)
ĐÁP ÁN – THANG ĐIỂM
Câu
Nội dung
Điểm
I
1)Khảo sát sự biến thiên và vẽ đồ thị của hàm số (2đ)
TXĐ:
;
x
0 2
y'
+ 0 - 0 +
y
1 +
-3
Vậy hàm số đồng biến trên các khoảng .
Hàm số nghịch biến trên khoảng .
Hàm số đạt cực đại tại x = 0, = 1. Hàm số đạt cực tiểu tại x =2, -3
Điểm đặc biệt
x
-1
3
y
-3
1
0,25
0,25
0,25
0,25
0,5
0,25
0,25
2) Tìm m để trình có ba nghiệm thực phân biệt
Số giao điểm của đường thẳng (d) và đồ thị (c) là số nghiệm của PT.
Để PT có 3 nghiệm phân biệt
Vậy thì phương trình có ba nghiệm
0,25
0,25
0,25
0,25
Câu II
1)
0,5
0,5
2) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = x(ln x - 2) trên đoạn [l; e2]
; [l; e2]
Vậy ;
0,5
0,5
Câu III
Cho hình chóp S.ABC có SA = 2a và SA ^(ABC). Tam giác ABC vuông cân tại B,
a)Tính thể tích khối chóp S.ABC (1đ)
SA là đường cao của hình chóp
=
Vậy
0,25
0,25
0,25
0,25
b)Gọi O là trung điểm SC O cách đều S và C
Dựng OI // SA suy ra I là trung điểm AC
và I là tâm của mặt đáy. OI là trục của đáy O cách đều A,Bvà C
Vậy O là tâm của mặt cầu ngoại tiếp hình chóp
0,25
0,25
0,25
0,25
Câu IVa
Hệ số góc k = 9
Với x0 = 2
Phương trình tiếp tuyến:
Với x0 = -2
Phương trình tiếp tuyến:
Vậy có hai phương trình tiếp tuyến: và .
0,25
0,25
0,25
0,25
Câu Va
Giải phương trình mũ
Đặt
Phương trình trở thành:
Vậy phương trình có nghiệm x = 2.
0,25
0,25
0,25
0,25
2)Giải bất phương trình lôgarit 2log3(4x-3) + (5)
Điều kiện
(5)
Kết hợp điều kiện, bất phương trình có tập nghiệm S = (; 3]
0,25
0,25
0,25
0,25
File đính kèm:
- de_tham_khao_hoc_ki_1_toan_lop_12_truong_thpt_phu_dien_co_da.doc