Bài 4. Cho đường tròn tâm O đường kính AB. Trên đường kính AB lấy hai điểm I và J đối xứng nhau qua O. M là một điểm (khác A và B) trên (O); các đường thẳng MO, MI, MJ thứ tự cắt (O) tại E, F, G; FG cắt AB tại C. Đường thẳng đi qua F song song AB cắt MO, MJ lần lượt tại D và K. Gọi H là trung điểm của FG.
a) Chứng minh tứ giác DHEF nội tiếp được.
b) Chứng minh CE là tiếp tuyến của đường tròn (O).
1 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1622 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Đề thi chọn học sinh giỏi lớp 9 cấp trường môn: Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC ĐÀO TẠO THỪA THIÊN HUẾ
TRƯỜNG THCS VÀ THPT TỐ HỮU
ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 9 CẤP TRƯỜNG
Môn: Toán.
Thời gian: 150 phút.
Bài 1: a) Giải phương trình: .
b) Tìm x, y thoả mãn:.
Bài 2. Rút gọn .
Bài 3. Tìm GTNN (nếu có) của các biểu thức sau:
.
.
Bài 4. Cho đường tròn tâm O đường kính AB. Trên đường kính AB lấy hai điểm I và J đối xứng nhau qua O. M là một điểm (khác A và B) trên (O); các đường thẳng MO, MI, MJ thứ tự cắt (O) tại E, F, G; FG cắt AB tại C. Đường thẳng đi qua F song song AB cắt MO, MJ lần lượt tại D và K. Gọi H là trung điểm của FG.
Chứng minh tứ giác DHEF nội tiếp được.
Chứng minh CE là tiếp tuyến của đường tròn (O).
.................................................
File đính kèm:
- DETHI.doc