1) Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(2;0) và B(6;4). Viết phương trình
đường tròn (C) tiếp xúc với trục hoành tại điểm A và khoảng cách từ tâm của (C) đến
điểm B bằng 5.
2) Trong không gian với hệ tọa độ Oxyz cho hình lăng trụ đứng ABC.A B C v 1 1 1 ới
A(0; 3;0), B(4;0;0), C(0;3;0), B (4;0;4). − 1
a) Tìm tọa độ các đỉnh A , C . Vi 1 1 ết phương trình mặt cầu có tâm là A và tiếp xúc với
mặt phẳng (BCC B ). 1 1
b) Gọi M là trung điểm của A B . Vi 1 1 ết phương trình mặt phẳng (P) đi qua hai điểm
A, M và song song với BC . M 1 ặt phẳng (P) cắt đường thẳng A C t 1 1 ại điểm N .
Tính độ dài đoạn MN.
1 trang |
Chia sẻ: lephuong6688 | Lượt xem: 1063 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh đại học, cao đẳng năm 2005 môn: Toán, Khối B, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO
-------------------------
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2005
Môn: TOÁN, khối B
Thời gian làm bài: 180 phút, không kể thời gian phát đề
--------------------------------------------------
Câu I (2 điểm)
Gọi m(C ) là đồ thị của hàm số
( )2x m 1 x m 1y
x 1
+ + + += + (*) ( m là tham số).
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (*) khi m 1.=
2) Chứng minh rằng với m bất kỳ, đồ thị m(C ) luôn luôn có điểm cực đại, điểm cực tiểu
và khoảng cách giữa hai điểm đó bằng 20.
Câu II (2 điểm)
1) Giải hệ phương trình ( )2 39 3
x 1 2 y 1
3log 9x log y 3.
⎧ − + − =⎪⎨ − =⎪⎩
2) Giải phương trình 1 sin x cos x sin 2x cos 2x 0.+ + + + =
Câu III (3 điểm)
1) Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(2;0) và B(6;4) . Viết phương trình
đường tròn (C) tiếp xúc với trục hoành tại điểm A và khoảng cách từ tâm của (C) đến
điểm B bằng 5.
2) Trong không gian với hệ tọa độ Oxyz cho hình lăng trụ đứng 1 1 1ABC.A B C với
1A(0; 3;0), B(4;0;0), C(0;3;0), B (4;0;4).−
a) Tìm tọa độ các đỉnh 1 1A , C . Viết phương trình mặt cầu có tâm là A và tiếp xúc với
mặt phẳng 1 1(BCC B ).
b) Gọi M là trung điểm của 1 1A B . Viết phương trình mặt phẳng (P) đi qua hai điểm
A, M và song song với 1BC . Mặt phẳng (P) cắt đường thẳng 1 1A C tại điểm N .
Tính độ dài đoạn MN.
Câu IV (2 điểm)
1) Tính tích phân
2
0
s in2x cosxI dx
1 cosx
π
= +∫ .
2) Một đội thanh niên tình nguyện có 15 người, gồm 12 nam và 3 nữ. Hỏi có bao nhiêu
cách phân công đội thanh niên tình nguyện đó về giúp đỡ 3 tỉnh miền núi, sao cho mỗi
tỉnh có 4 nam và 1 nữ?
Câu V (1 điểm)
Chứng minh rằng với mọi x ,∈\ ta có:
x x x
x x x12 15 20 3 4 5
5 4 3
⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ≥ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ .
Khi nào đẳng thức xảy ra?
--------------------------------Hết--------------------------------
Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh .................................................. Số báo danh ...............................
Mang Giao duc Edunet -
File đính kèm:
- De thi ToanB2005.pdf