Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA a, = SB a 3 = và
mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của các
cạnh AB, BC. Tính theo a thể tích của khối chóp S.BMDN và tính cosin của góc giữa hai
đường thẳng SM, DN.
1 trang |
Chia sẻ: lephuong6688 | Lượt xem: 793 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh đại học, cao đẳng năm 2008 môn thi: Toán, Khối B, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008
Môn thi: TOÁN, khối B
Thời gian làm bài 180 phút, không kể thời gian phát đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH
Câu I (2 điểm)
Cho hàm số 3 2y 4x 6x 1= − + (1).
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2. Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết rằng tiếp tuyến đó đi qua
điểm ( )M 1; 9 .− −
Câu II (2 điểm)
1. Giải phương trình 3 3 2 2sin x 3cos x s inxcos x 3sin xcosx.− = −
2. Giải hệ phương trình
4 3 2 2
2
x 2x y x y 2x 9
x 2xy 6x 6
⎧ + + = +⎪⎨
+ = +⎪⎩
( )x, y .∈\
Câu III (2 điểm)
Trong không gian với hệ tọa độ Oxyz, cho ba điểm ( ) ( ) ( )A 0;1;2 , B 2; 2;1 ,C 2;0;1 .− −
1. Viết phương trình mặt phẳng đi qua ba điểm A,B,C.
2. Tìm tọa độ của điểm M thuộc mặt phẳng 2x 2y z 3 0+ + − = sao cho MA MB MC.= =
Câu IV (2 điểm)
1. Tính tích phân
4
0
sin x dx
4I .
sin 2x 2(1 sin x cos x)
π π⎛ ⎞
−⎜ ⎟⎝ ⎠
=
+ + +∫
2. Cho hai số thực x, y thay đổi và thỏa mãn hệ thức 2 2x y 1.+ = Tìm giá trị lớn nhất và giá
trị nhỏ nhất của biểu thức
2
2
2(x 6xy)P .
1 2xy 2y
+
=
+ +
PHẦN RIÊNG Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b
Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm)
1. Chứng minh rằng k k 1 k
n 1 n 1 n
n 1 1 1 1
n 2 C C C++ +
⎛ ⎞+
+ =⎜ ⎟
+ ⎝ ⎠
(n, k là các số nguyên dương, k n,≤ knC là
số tổ hợp chập k của n phần tử).
2. Trong mặt phẳng với hệ tọa độ Oxy, hãy xác định tọa độ đỉnh C của tam giác ABC biết
rằng hình chiếu vuông góc của C trên đường thẳng AB là điểm H( 1; 1),− − đường phân giác
trong của góc A có phương trình x y 2 0− + = và đường cao kẻ từ B có phương trình
4x 3y 1 0.+ − =
Câu V.b. Theo chương trình phân ban (2 điểm)
1. Giải bất phương trình
2
0,7 6
x xlog log 0.
x 4
⎛ ⎞+
<⎜ ⎟
+⎝ ⎠
2. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA a,= SB a 3= và
mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của các
cạnh AB, BC. Tính theo a thể tích của khối chóp S.BMDN và tính cosin của góc giữa hai
đường thẳng SM, DN.
...........................Hết...........................
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:........................................................ Số báo danh:.............................................
ĐỀ CHÍNH THỨC
File đính kèm:
- De_Toan_B08.pdf