Đề thi tuyển sinh lớp 10 THPT thành phố Cần Thơ năm học 2012-2013 môn Toán

Câu 3: (1,5 điểm)

 Cho phương trình (ẩn số x): .

1. Chứng minh phương trình (*) luôn có hai nghiệm phân biệt với mọi m.

2. Tìm giá trị của m để phương trình (*) có hai nghiệm thỏa .

 

Câu 4: (1,5 điểm)

Một ô tô dự định đi từ A đến B cách nhau 120 km trong một thời gian quy định. Sau khi đi được 1 giờ thì ô tô bị chặn bởi xe cứu hỏa 10 phút. Do đó để đến B đúng hạn xe phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của ô tô.

 

 

doc3 trang | Chia sẻ: oanh_nt | Lượt xem: 1766 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh lớp 10 THPT thành phố Cần Thơ năm học 2012-2013 môn Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ CẦN THƠ ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013 Khóa ngày:21/6/2012 MÔN: TOÁN Thời gian làm bài: 120 phút (không kể thời gian phát đề) Câu 1: (2,0 điểm) Giải hệ phương trình , các phương trình sau đây: 1. 2. 3. 4. Câu 2: (1,5 điểm) Cho biểu thức: (với ) 1. Rút gọn biểu thức K. 2. Tìm a để . Câu 3: (1,5 điểm) Cho phương trình (ẩn số x): . 1. Chứng minh phương trình (*) luôn có hai nghiệm phân biệt với mọi m. 2. Tìm giá trị của m để phương trình (*) có hai nghiệm thỏa . Câu 4: (1,5 điểm) Một ô tô dự định đi từ A đến B cách nhau 120 km trong một thời gian quy định. Sau khi đi được 1 giờ thì ô tô bị chặn bởi xe cứu hỏa 10 phút. Do đó để đến B đúng hạn xe phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của ô tô. Câu 5: (3,5 điểm) Cho đường tròn , từ điểm ở ngoài đường tròn vẽ hai tiếp tuyến và(là các tiếp điểm). cắttại E. 1. Chứng minh tứ giác nội tiếp. 2. Chứng minh vuông góc với và . 3. Gọilà trung điểm của , đường thẳng quavà vuông góc cắt các tia theo thứ tự tại và . Chứng minh và cân tại . 4. Chứng minh là trung điểm của. GỢI Ý GIẢI: Câu 1: (2,0 điểm) Giải hệ phương trình , các phương trình sau đây: 1. 2. 3. 4. Câu 2: (1,5 điểm) Cho biểu thức: (với ) = a = 503 (TMĐK) Câu 3: (1,5 điểm) Cho phương trình (ẩn số x):. 1. Vậy (*) luôn có hai nghiệm phân biệt với mọi m. 2. Tìm giá trị của m để phương trình (*) có hai nghiệm thỏa . Theo hệ thức VI-ET có :x1.x2 = - m2 + 3 ;x1+ x2 = 4; mà => x1 = - 1 ; x2 = 5 Thay x1 = - 1 ; x2 = 5 vào x1.x2 = - m2 + 3 => m = Câu 4: (1,5 điểm) Gọi x (km/h) là vt dự định; x > 0 => Thời gian dự định : Sau 1 h ô tô đi được x km => quãng đường còn lại 120 – x ( km) Vt lúc sau: x + 6 ( km/h) Pt => x = 48 (TMĐK) => KL HD C3 Tam giác BOC cân tại O => góc OBC = góc OCB Tứ giác OIBD có góc OID = góc OBD = 900 nên OIBD nội tiếp => góc ODI = góc OBI Do đó Lại có FIOC nội tiếp ; nên góc IFO = góc ICO Suy ra góc OPF = góc OFP ; vậy cân tại . HD C4 Xét tứ giác BPFE có IB = IE ; IP = IF ( Tam giác OPF cân có OI là đường cao=> ) Nên BPEF là Hình bình hành => BP // FE Tam giác ABC có EB = EC ; BA // FE; nên EF là ĐTB của tam giác ABC => FA = FC

File đính kèm:

  • docDeDA Toan vao 10Can Tho 1213.doc