Câu 4 ( 3 điểm )
1) Cho tứ giác ABCD nội tiếp đường tròn (O) . Chứng minh
AB.CD + BC.AD = AC.BD
2) Cho tam giác nhọn ABC nội tiếp trong đường tròn (O) đường kính AD . Đường cao của tam giác kẻ từ đỉnh A cắt cạnh BC tại K và cắt đường tròn (O) tại E .
a) Chứng minh : DE//BC .
b) Chứng minh : AB.AC = AK.AD .
c) Gọi H là trực tâm của tam giác ABC . Chứng minh tứ giác BHCD là hình bình hành .
1 trang |
Chia sẻ: thanhthanh29 | Lượt xem: 482 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh vào lớp 10 THPT môn Toán - Đề 8, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ SỐ 8
Câu1 ( 2 điểm )
Tìm m để phơng trình ( x2 + x + m) ( x2 + mx + 1 ) = 0 có 4 nghiệm phân biệt .
Câu 2 ( 3 điểm )
Cho hệ phơng trình :
Giải hệ khi m = 3
Tìm m để phơng trình có nghiệm x > 1 , y > 0 .
Câu 3 ( 1 điểm )
Cho x , y là hai số dơng thoả mãn x5+y5 = x3 + y3 . Chứng minh x2 + y2 1 + xy
Câu 4 ( 3 điểm )
Cho tứ giác ABCD nội tiếp đờng tròn (O) . Chứng minh
AB.CD + BC.AD = AC.BD
Cho tam giác nhọn ABC nội tiếp trong đờng tròn (O) đờng kính AD . Đờng cao của tam giác kẻ từ đỉnh A cắt cạnh BC tại K và cắt đờng tròn (O) tại E .
Chứng minh : DE//BC .
Chứng minh : AB.AC = AK.AD .
Gọi H là trực tâm của tam giác ABC . Chứng minh tứ giác BHCD là hình bình hành .
File đính kèm:
- DE THI TUYEN SINH VAO LOP 10 THPT DE 8.doc