ĐỀ THI CHỌN HỌC SINH GIỎI
GIẢI TOÁN TRÊN MÁY TÍNH CASIO
Học sinh điền kết quả của mỗi câu hỏi vào ô trống, nếu không có yêu cầu gì thêm thì điền kết quả với độ chính xác tới 5 chữ số thập phân
Bài 1:(5 điểm) : Dân số một nước là 65 triệu, mức tăng dân số là 1,2% / năm.
a. Tính dân số nước ấy sau 15 năm.
b. Dân số nước đó sau n năm sẽ vượt 100 triệu. Tìm n bé nhất.
6 trang |
Chia sẻ: thanhthanh29 | Lượt xem: 665 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề thi và đáp án Máy tính cầm tay - Đề 24, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI CHỌN HỌC SINH GIỎI
GIẢI TOÁN TRÊN MÁY TÍNH CASIO
Học sinh điền kết quả của mỗi câu hỏi vào ô trống, nếu không có yêu cầu gì thêm thì điền kết quả với độ chính xác tới 5 chữ số thập phân
Bài 1:(5 điểm) : Dân số một nước là 65 triệu, mức tăng dân số là 1,2% / năm.
Tính dân số nước ấy sau 15 năm.
Dân số nước đó sau n năm sẽ vượt 100 triệu. Tìm n bé nhất.
Cách giải
Kết quả
a)
a)
b)
b)
Bài 2: (5 điểm) Tìm số dư trong các phép chia sau:
a) 1234567890987654321 chia cho 207207 (2,5 điểm)
b) chia cho 2007 (2,5 điểm)
Cách giải
Kết quả
a)
Số dư:
b)
Số dư:
Bài 3:(5 điểm) Tìm thương và số dư trong phép chia đa thức:P(x) = 5x6+2x5-7x4+2x2–6x +9 cho nhị thức x + 5 . Tìm giá trị của đa thức P(x) tại x = 3
Cách giải
Kết quả
Thương Q(x) =
Số dư r =
P(3) =
Bài 4: (5 điểm) Tính gần đúng các nghiệm (độ, phút, giây) của phương trình:
Cách giải
Kết quả
Bài 5: Cho dãy số: a1 = 1; a2 = 2; an+2 = an+1 + an, với n > 0. Tính a10 và tổng S10 của 10 số hạng đầu tiên.
Cách giải
Kết quả
a)
a) u10
b)
b) S10
Bài 6: (5 điểm) Tính gần đúng giá trị của a và b nếu đường thẳng y = ax + b là tiếp tuyến của đồ thị hàm sốtại tiếp điểm có hoành độ
Cách giải
Kết quả
a
b
Bài 7: (5 điểm) Tìm nghiệm gần đúng (với 9 chữ số ở phần thập phân) của phương trình:
cosx = 3x
Cách giải
Kết quả
x
Bài 8: (5 điểm) Cho tứ diện ABCD có các cạnh AB =, BC = ,CD = ,BD=
và chân đường vuông góc hạ từ A xuống mặt phẳng (BCD) là trọng tâm của tam giác BCD.
Tính VABCD.
Cách giải
Kết quả
VABCD »
Bài 9: (5 điểm) Tìm hai chữ số tận cùng của số
A = 2999.
B = 3999.
Cách giải
Kết quả
a)
a)
b)
b)
Bài 10: (5 điểm) Cho hai đường tròn có phương trình tương ứng là:
x2 + y2 – 2x – 6y –6 = 0 và x2 + y2 – 2x + 3y – 2 = 0
Tính gần đúng toạ độ các giao điểm của hai đường tròn đó
Tìm a và b để đường tròn có phương trình: x2 + y2 + ax + by – 4 = 0 cũng đi qua 2 giao điểm trên
Cách giải
Kết quả
a)
a)
b)
b)
Bài 1:(5 điểm) : Dân số một nước là 65 triệu, mức tăng dân số là 1,2% / năm.
Tính dân số nước ấy sau 15 năm.
Dân số nước đó sau n năm sẽ vượt 100 triệu. Tìm n bé nhất.
Cách giải
Kết quả
a) Áp dụng công thức A = a(1 + r)n với a = 65 triệu, r = 1,2%/năm và n =15 ta được A = 77735794,96 người
a) 77735795 người
b) Từ công thức A = a(1 + r)n, suy ra n = . Thay số ta được n 36,11.
b) 37 năm
Bài 2: (5 điểm) Tìm số dư trong các phép chia sau:
a) 1234567890987654321 chia cho 207207 (2,5 điểm)
b) chia cho 2007 (2,5 điểm)
Cách giải
Kết quả
a) Ta cắt ra thành nhóm đầu 9 chữ số rồi tìm số dư của phép chia 123456789 cho 207207 được:
123456789 – 207207 x 595 = 168624
Viết liên tiếp sau số dư đó các số tiếp theo ở số bị chia (kể từ trái)tối đa đủ 9 chữ số:
168624098 – 207207 x 813 = 164807
164807765 – 207207 x 795 = 78200
782004321 – 207207 x 3774 = 5103
Số dư: 5103
b)
Số dư: 1899
Bài 3:(5 điểm) Tìm thương và số dư trong phép chia đa thức:P(x) = 5x6+2x5-7x4+2x2–6x +9 cho nhị thức x + 5 . Tìm giá trị của đa thức P(x) tại x = 3
Cách giải
Kết quả
Lược đồ Hoocne:
5
2
-7
0
2
-6
9
-5
5
-23
108
-540
2702
-13516
67589
Thương Q(x) = 5x5 - 23x4 + 108x3 - 540x2 + 2702x - -13516
Số dư r = 67589
P(3) = 3573
Bài 4: (5 điểm) Tính gần đúng các nghiệm (độ, phút, giây) của phương trình:
Cách giải
Kết quả
Bài 5: Cho dãy số: a1 = 1; a2 = 2; an+2 = an+1 + an, với n > 0. Tính a10 và tổng S10 của 10 số hạng đầu tiên.
Cách giải
Kết quả
a) Gán D = 2; A = 1; B = 2; C = 3.
Nhập biểu thức: D = D + 1: A = B + A : C = C + A : D = D + 1: B = A + B : C = C + B.
Bấm đến khi D = 10, bấm được u10.
a) a10 0,64131
b) Bấm thêm một lần nữa được S10.
b) S10 10,67523
Bài 6: (5 điểm) Tính gần đúng giá trị của a và b nếu đường thẳng y = ax + b là tiếp tuyến của đồ thị hàm sốtại tiếp điểm có hoành độ
Cách giải
Kết quả
. Ghi vào màn hình:
b = y – ax =- ax
a-0,04604
b 0,74360
Bài 7: (5 điểm) Tìm nghiệm gần đúng (với 9 chữ số ở phần thập phân) của phương trình:
cosx = 3x
Cách giải
Kết quả
Để ở chế độ R. Ghi vào màn hình phương trình trên, rồi dùng phím SOLVE để giải
hoặc: cosx = 3x= g(x).
Chọn x1 tuỳ ý rồi ấn . Ghi vào màn hình:
cos Ans 3 ... .
x0,316750828
Bài 8: (5 điểm) Cho tứ diện ABCD có các cạnh AB =, BC = ,CD = , BD =
và chân đường vuông góc hạ từ A xuống mặt phẳng (BCD) là trọng tâm của tam giác BCD.
Tính VABCD.
Cách giải
Kết quả
Đặt a = AB =; b = CD =;
c = BD =; d = BC =
Ta có nửa chu vi tam giác BCD:
p = (b + c + d)/2 và S =
Trung tuyến BB’ =
Þ BG = BB’ =
Þ AG = .
Vậy V = S.AG
VABCD » 711,37757 (đvtt)
Bài 9: (5 điểm) Tìm hai chữ số tận cùng của số
A = 2999.
B = 3999.
Cách giải
Kết quả
a) 2999 = 220.49 + 19 = (220)49.219. Ta có 220 tận cùng bằng 76 nên (220)49 tận cùng bằng 76; 219 tận cùng bằng 88. Ta có 76.88 tận cùng là 88.
a) 88
b) 3999 = 320.49 + 19 = (320)49.219. Ta có 320 tận cùng bằng 01 nên (320)49 tận cùng bằng 01; 319 tận cùng bằng 67. Do đó 3999 tận cùng bằng 67.
b) 67
Bài 10: (5 điểm) Cho hai đường tròn có phương trình tương ứng là:
x2 + y2 – 2x – 6y –6 = 0 và x2 + y2 – 2x + 3y – 2 = 0
Tính gần đúng toạ độ các giao điểm của hai đường tròn đó
Tìm a và b để đường tròn có phương trình: x2 + y2 + ax + by – 4 = 0 cũng đi qua 2 giao điểm trên
Cách giải
Kết quả
a)
Trừ (1) và (2) Þ -9y - 4 = 0 Û y = - (3)
Thay (3) vào (1) Þ x2 - 2x + ()2 - 6()2 - 6 = 0.
a)
b)
Û
b)
File đính kèm:
- Dethi MTBT_24.doc