Bµi 3: (5 điểm) a/ Tính tổng các ước dương lẻ của số D = 8863701824.
b/ Tìm các số sao cho . Nêu quy trình bấm phím để được kết quả.
Bµi 4: (5 điểm) Tìm số tự nhiên nhỏ nhất sao cho khi lập phương số đó ta được số tự nhiên có 3 chữ số cuối đều là chữ số 7 và 3 chữ số đầu cũng đều là chữ số 7: . Nêu sơ lược cách giải.
Bµi 5: (5 điểm) Tìm số tự nhiên N nhỏ nhất và số tự nhiên M lớn nhất gồm 12 chữ số, biết rằng M và N chia cho các số 1256; 3568 và 4184 đều cho số dư là 973. Nêu sơ lược cách giải.
Bµi 6: (4 điểm) Tìm số dư trong phép chia cho 793 và số dư trong phép chia cho 793
6 trang |
Chia sẻ: oanh_nt | Lượt xem: 2139 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Đề và đáp án Kì thi chọn học sinh giỏi lớp 9 môn thi giải toán trên máy tính cầm tay mã đề 19, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Phßng GD & §T Ninh giang
Trêng THCS an ®øc
M· ®Ò: 19
K× thi chän häc sinh giái líp 9
M«n thi: Gi¶i to¸n trªn m¸y tÝnh cÇm tay
Thêi gian 120 phót (kh«ng kÓ thêi gian giao ®Ò)
Bµi 1: (5 điểm) Tính giá trị của biểu thức:
(Kết quả chính xác).
biết
, với .
Bµi 2: (5 điểm) Cho đa thức .
Tìm các nghiệm của đa thức .
Tìm các hệ số của đa thức bậc ba , biết rằng khi chia đa thức cho đa thức thì được đa thức dư là .
Tính chính xác giá trị của .
Bµi 3: (5 điểm) a/ Tính tổng các ước dương lẻ của số D = 8863701824.
b/ Tìm các số sao cho . Nêu quy trình bấm phím để được kết quả.
Bµi 4: (5 điểm) Tìm số tự nhiên nhỏ nhất sao cho khi lập phương số đó ta được số tự nhiên có 3 chữ số cuối đều là chữ số 7 và 3 chữ số đầu cũng đều là chữ số 7: . Nêu sơ lược cách giải.
Bµi 5: (5 điểm) Tìm số tự nhiên N nhỏ nhất và số tự nhiên M lớn nhất gồm 12 chữ số, biết rằng M và N chia cho các số 1256; 3568 và 4184 đều cho số dư là 973. Nêu sơ lược cách giải.
Bµi 6: (4 điểm) Tìm số dư trong phép chia cho 793 và số dư trong phép chia cho 793
Bài 7: (6 điểm) Cho dãy hai số và có số hạng tổng quát là:
và ( và )
Xét dãy số ( và ).
Tính các giá trị chính xác của .
Lập các công thức truy hồi tính theo và ; tính theo và .
Từ 2 công thức truy hồi trên, viết quy trình bấm phím liên tục để tính và theo (). Ghi lại giá trị chính xác của:
Bài 9: (5 điểm) Lãi suất của tiền gửi tiết kiệm của một số ngân hàng thời gian vừa qua liên tục thay đổi. Bạn Châu gửi số tiền ban đầu là 5 triệu đồng với lãi suất 0,7% tháng chưa đầy một năm, thì lãi suất tăng lên 1,15% tháng trong nửa năm tiếp theo và bạn Châu tiếp tục gửi; sau nửa năm đó lãi suất giảm xuống còn 0,9% tháng, bạn Châu tiếp tục gửi thêm một số tháng tròn nữa, khi rút tiền bạn Châu được cả vốn lẫn lãi là 5 747 478,359 đồng (chưa làm tròn). Hỏi bạn Châu đã gửi tiền tiết kiệm trong bao nhiêu tháng ? Nêu sơ lược quy trình bấm phím trên máy tính để giải.
Bài 10: (7 điểm) Cho 3 đường thẳng lần lượt là đồ thị của các hàm số và . Hai đường thẳng và cắt nhau tại A; hai đường thẳng và cắt nhau tại B; hai đường thẳng và cắt nhau tại C.
a) Tìm tọa độ của các điểm A, B, C (viết dưới dạng phân số).
b) Tính gần đúng hệ số góc của đường thẳng chứa tia phân giác trong góc A của tam giác ABC và tọa độ giao điểm D của tia phân giác trong góc A với cạnh BC.
c) Tính gần đúng diện tích phần hình phẳng giữa đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC. Kết quả làm tròn đến 2 chữ số lẻ thập phân.
(Cho biết công thức tính diện tích tam giác: (a, b, c là ba cạnh ; p là nửa chu vi, R là bán kính đường tròn ngoại tiếp của tam giác; đơn vị độ dài trên mỗi trục tọa độ là cm)
Hết
Së Gi¸o dôc vµ ®µo t¹o kú thi chän hoc sinh giái tØnh
Thõa Thiªn HuÕ líp 9 thCS n¨m häc 2008 - 2009
M«n : MÁY TÍNH CẦM TAY
§¸p ¸n vµ thang ®iÓm:
Bµi
C¸ch gi¶i
§iÓm TP
§iÓm toµn bµi
1
1,5
5
.
2,0
1,5
2
1,5
5
Theo giả thiết ta có: , suy ra:
Giải hệ phương trình ta được:
Cách giải: Nhập biểu thức , bấm phím CALC và nhập số 2008 = ta được số hiện ra trên màn hình: Ấn phím - nhập = được . Suy ra giá trị chính xác: .
1,5
1,0
1,5
3
a)
Tổng các ước lẻ của D là:
1,0
1,0
5
b) Số cần tìm là: 3388
Cách giải:
.
Do đó:
Nếu , điều này không xảy ra.
Tương tự, nếu , điều này không xảy ra.
Quy trình bấm máy:
100 ALPHA A + ALPHA X - 11 ( ALPHA A + 1 ) ( ALPHA X - 1 ) ALPHA = 0
SHIFT SOLVE Nhập giá trị A là 1 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X là số lẻ thập phân.
SHIFT SOLVE Nhập giá trị A là 2 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X là số lẻ thập phân.
SHIFT SOLVE Nhập giá trị A là 3 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X = 8;
tiếp tục quy trình cho đến khi A = 9.
Ta chỉ tìm được số: 3388.
1,0
1,0
2,0
1,0
4
Hàng đơn vị chỉ có có chữ số cuối là 7. Với cac số chỉ có có 2 chữ số cuối đều là 7.
Với các chữ số chỉ có 7533 có 3 chữ số cuối đều là 7.
Ta có: ; , ; ...
Như vậy, để các số lập phương của nó có 3 số đuôi là chữ số 7 phải bắt đầu bởi các số: 91; 198; 426; 91x; 198x; 426x; .... (x = 0, 1, 2, ..., 9)
Thử các số:
Vậy số cần tìm là:
n = 426753 và .
1,5
1,5
2,0
5
5
Gọi x là số khi chia cho các số 1256; 3568 và 4184 đều có số dư là 973. Khi đó,
Do đó, là bội số chung của 1256; 3568 và 4184.
Suy ra:
Dùng máy Vinacal Vn-500MS để tìm BCNN của 3 số đó:
SHIFT LCM( 1256 , 3568 , 4184 ) SHIFT STO A.
Theo giả thiết:
Vậy: và
1,0
1,0
1,0
2,0
5
6
197334 SHIFT STO A
SHIFT MOd( ALPHA A , 793 ) = cho kết quả: 670
SHIFT MOd( ALPHA A x2 , 793 ) = cho kết quả: 62
SHIFT MOd( ALPHA A ^ 3 , 793 ) = cho kết quả: 304
(Lưu ý: A4 vượt quá 16 chữ số, kết quả không còn chính xác nữa)
SHIFT MOd( ALPHA 304 ´ 62 , 793 ) = cho kết quả: 609. Tức là:
SHIFT MOd( ALPHA 606 x2 , 793 ) = cho kết quả: 550. Tức là: .
Tương tự: .
Vậy: . Đáp số: 304
+ Ta có: 2008 = 33´60 + 28, nên:
;
Suy ra: . Đáp số: 672.
2,0
2,0
5
7
.
Công thức truy hồi của un+2 có dạng: . Ta có hệ phương trình:
Do đó:
Tương tự:
Quy trình bấm phím:
1 SHIFT STO A 10 SHIFT STO B 1SHIFT STO C 14 SHIFT STO D 2SHIFT STO X (Biến đếm)
ALPHA X ALPHA = ALPHA X + 1 ALPHA : ALPHA E ALPHA = 10 ALPHA B - 13 ALPHA A ALPHA : ALPHA A ALPHA = ALPHA B ALPHA : ALPHA B ALPHA = ALPHA E ALPHA : ALPHA F ALPHA = 14 ALPHA D - 29 ALPHA C ALPHA : ALPHA C ALPHA = ALPHA D ALPHA : ALPHA D ALPHA = ALPHA F ALPHA : ALPHA Y ALPHA = 2 ALPHA E + 3 ALPHA F = = = ... (giá trị của E ứng với un+2, của F ứng với vn+2, của Y ứng với zn+2). Ghi lại các giá trị như sau:
1,0
1,0
1,0
1,0
2,0
5
8
Điểm trung bình của lớp 9A là: ; Phương sai: và độ lệch chuẩn là: .
Điểm trung bình của lớp 9B là: ; Phương sai: và độ lệch chuẩn là: .
Điểm trung bình của lớp 9C là: ; Phương sai: và độ lệch chuẩn là: .
1,0
1,0
1,0
3
9
Gọi a là số tháng gửi với lãi suất 0,7% tháng, x là số tháng gửi với lãi suất 0,9% tháng, thì số tháng gửi tiết kiệm là: a + 6 + x. Khi đó, số tiền gửi cả vốn lẫn lãi là:
Quy trình bấm phím:
5000000 ´ 1.007 ^ ALPHA A ´ 1.0115 ^ 6 ´ 1.009 ^ ALPHA X - 5747478.359 ALPHA = 0
SHIFT SOLVE Nhập giá trị của A là 1 = Nhập giá trị đầu cho X là 1 = SHIFT SOLVE Cho kết quả X là số không nguyên.
Lặp lại quy trình với A nhập vào lần lượt là 2, 3, 4, 5, ...đến khi nhận được giá trị nguyên của X = 4 khi A = 5.
Vậy số tháng bạn Châu gửi tiết kiệm là: 5 + 6 + 4 = 15 tháng
2,0
2,0
1,0
5
10
a)
b)
Góc giữa tia phân giác At và Ox là:
Suy ra: Hệ số góc của At là:
Bấm máy:
tan ( 0.5 ( SHIFT tan-1 3 + SHIFT tan-1 ( 2 ab/c 3 ) ) ) SHIFT STO A cho kết quả:
+ Đường thẳng chứa tia phân giác At là đồ thị của hàm số: , At đi qua điểm nên .
+ Tọa độ giao điểm D của At và BC là nghiệm của hệ phương trình: . Giải hệ pt bằng cách bấm máy nhưng nhập hệ số a2 dùng ALPHA A và nhập hệ số c2 dùng (-) 3 ALPHA A + 4, ta được kết quả:
1,5
1,0
1,5
7
c) Tính và gán cho biến A
Tính và gán cho biến B
Tính và gán cho biến C
( ALPHA A + ALPHA B + ALPHA C ) ¸ 2 SHIFT STO D (Nửa chu vi p)
Diện tích của tam giác ABC:
( ( ALPHA D ( ALPHA D - ( ALPHA A ) ( ALPHA D - ( ALPHA B ) ( ALPHA D ) ) SHIFT STO E
Bán kính đường tròn ngoại tiếp tam giác ABC: :
ALPHA A ALPHA B ALPHA C ¸ 4 ¸ ALPHA E SHIFT STO F
1,0
1,0
Bán kính đường tròn nội tiếp tam giác ABC: .
Diện tích phần hình phẳng giữa đường tròn nội tiếp và đường tròn ngoại tiếp tam giác ABC là:
SHIFT ( ALPHA E x2 - ( ALPHA E ¸ ALPHA D ) x2 = Cho kết quả
1,0
File đính kèm:
- 19.doc