Đề và đáp án Kì thi chọn học sinh giỏi lớp 9 môn thi giải toán trên máy tính cầm tay mã đề 20

Bài 9: (5 điểm) Lãi suất của tiền gửi tiết kiệm của một số ngân hàng thời gian vừa qua liên tục thay đổi. Bạn Châu gửi số tiền ban đầu là 5 triệu đồng với lãi suất 0,7% tháng chưa đầy một năm, thì lãi suất tăng lên 1,15% tháng trong nửa năm tiếp theo và bạn Châu tiếp tục gửi; sau nửa năm đó lãi suất giảm xuống còn 0,9% tháng, bạn Châu tiếp tục gửi thêm một số tháng tròn nữa, khi rút tiền bạn Châu được cả vốn lẫn lãi là 5 747 478,359 đồng (chưa làm tròn). Hỏi bạn Châu đã gửi tiền tiết kiệm trong bao nhiêu tháng ? Nêu sơ lược quy trình bấm phím trên máy tính để giải.

Bài 10: (7 điểm) Trong mặt phẳng tọa độ cho các điểm . AD là tia phân giác trong góc A .

a) Tính diện tích tam giác ABC với kết quả chính xác và tính gần đúng độ dài đoạn BD; đường cao AH của tam giác ABC. Cho biết tính chất đường phân giác AD trong tam giác ABC là: .

b) Tính diện tích tam giác ABD, độ dài đoạn AD và bán kính đường tròn nội tiếp tam giác ABD (tính chính xác đến 02 chữ số sau dấu phẩy)

 

 

doc7 trang | Chia sẻ: oanh_nt | Lượt xem: 1185 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Đề và đáp án Kì thi chọn học sinh giỏi lớp 9 môn thi giải toán trên máy tính cầm tay mã đề 20, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Phßng GD & §T Ninh giang Trêng THCS an ®øc M· ®Ò: 20 K× thi chän häc sinh giái líp 9 M«n thi: Gi¶i to¸n trªn m¸y tÝnh cÇm tay Thêi gian 120 phót (kh«ng kÓ thêi gian giao ®Ò) Bµi 1: (5 điểm) Tính giá trị của biểu thức: (Kết quả chính xác). biết , với . Bµi 2: (5 điểm) Cho đa thức . Tìm các nghiệm của đa thức . Tìm các hệ số của đa thức bậc ba , biết rằng khi chia đa thức cho đa thức thì được đa thức dư là . Tính chính xác giá trị của . Bµi 3: (5 điểm) a/ Tính tổng các ước dương lẻ của số D = 8863701824. b/ Tìm các số sao cho . Nêu quy trình bấm phím để được kết Bµi 4: (5 điểm) Tìm số tự nhiên nhỏ nhất sao cho khi lập phương số đó ta được số tự nhiên có 3 chữ số cuối đều là chữ số 7 và 3 chữ số đầu cũng đều là chữ số 7: . Nêu sơ lược cách g Bµi 5: (5 điểm) Tìm số tự nhiên N nhỏ nhất và số tự nhiên M lớn nhất gồm 12 chữ số, biết rằng M và N chia cho các số 1256; 3568 và 4184 đều cho số dư là 973. Nêu sơ lược cách giải. Bµi 6: (4 điểm) Tìm số dư trong phép chia cho 793 và số dư trong phép chia cho 793 Bài 7: (6 điểm) Cho dãy hai số và có số hạng tổng quát là: và ( và ) Xét dãy số ( và ). Tính các giá trị chính xác của . Lập các công thức truy hồi tính theo và ; tính theo và . Từ 2 công thức truy hồi trên, viết quy trình bấm phím liên tục để tính và theo (). Ghi lại giá trị chính xác của: Bài 9: (5 điểm) Lãi suất của tiền gửi tiết kiệm của một số ngân hàng thời gian vừa qua liên tục thay đổi. Bạn Châu gửi số tiền ban đầu là 5 triệu đồng với lãi suất 0,7% tháng chưa đầy một năm, thì lãi suất tăng lên 1,15% tháng trong nửa năm tiếp theo và bạn Châu tiếp tục gửi; sau nửa năm đó lãi suất giảm xuống còn 0,9% tháng, bạn Châu tiếp tục gửi thêm một số tháng tròn nữa, khi rút tiền bạn Châu được cả vốn lẫn lãi là 5 747 478,359 đồng (chưa làm tròn). Hỏi bạn Châu đã gửi tiền tiết kiệm trong bao nhiêu tháng ? Nêu sơ lược quy trình bấm phím trên máy tính để giải. Bài 10: (7 điểm) Trong mặt phẳng tọa độ cho các điểm . AD là tia phân giác trong góc A . Tính diện tích tam giác ABC với kết quả chính xác và tính gần đúng độ dài đoạn BD; đường cao AH của tam giác ABC. Cho biết tính chất đường phân giác AD trong tam giác ABC là: . Tính diện tích tam giác ABD, độ dài đoạn AD và bán kính đường tròn nội tiếp tam giác ABD (tính chính xác đến 02 chữ số sau dấu phẩy) Hết Së Gi¸o dôc vµ ®µo t¹o kú thi chän hoc sinh giái tØnh Thõa Thiªn HuÕ líp 8 thCS n¨m häc 2008 - 2009 M«n : MÁY TÍNH CẦM TAY §¸p ¸n vµ thang ®iÓm: Bµi C¸ch gi¶i §iÓm TP §iÓm toµn bµi 1 1,5 5 . 2,0 1,5 2 1,5 5 Theo giả thiết ta có: , suy ra: Giải hệ phương trình ta được: Cách giải: Nhập biểu thức , bấm phím CALC và nhập số 2008 = ta được số hiện ra trên màn hình: Ấn phím - nhập = được . Suy ra giá trị chính xác: . 1,5 1,0 1,5 3 a) Tổng các ước lẻ của D là: 1,0 1,0 5 b) Số cần tìm là: 3388 Cách giải: . Do đó: Nếu , điều này không xảy ra. Tương tự, nếu , điều này không xảy ra. Quy trình bấm máy: 100 ALPHA A + ALPHA X - 11 ( ALPHA A + 1 ) ( ALPHA X - 1 ) ALPHA = 0 SHIFT SOLVE Nhập giá trị A là 1 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X là số lẻ thập phân. SHIFT SOLVE Nhập giá trị A là 2 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X là số lẻ thập phân. SHIFT SOLVE Nhập giá trị A là 3 = Nhập tiếp giá trị đầu cho X là 2 = cho kết quả X = 8; tiếp tục quy trình cho đến khi A = 9. Ta chỉ tìm được số: 3388. 1,0 1,0 2,0 1,0 4 Hàng đơn vị chỉ có có chữ số cuối là 7. Với cac số chỉ có có 2 chữ số cuối đều là 7. Với các chữ số chỉ có 7533 có 3 chữ số cuối đều là 7. Ta có: ; , ; ... Như vậy, để các số lập phương của nó có 3 số đuôi là chữ số 7 phải bắt đầu bởi các số: 91; 198; 426; 91x; 198x; 426x; .... (x = 0, 1, 2, ..., 9) Thử các số: Vậy số cần tìm là: n = 426753 và . 1,5 1,5 2,0 5 5 Gọi x là số khi chia cho các số 1256; 3568 và 4184 đều có số dư là 973. Khi đó, Do đó, là bội số chung của 1256; 3568 và 4184. Suy ra: Dùng máy Vinacal Vn-500MS để tìm BCNN của 3 số đó: SHIFT LCM( 1256 , 3568 , 4184 ) SHIFT STO A. Theo giả thiết: Vậy: và 1,0 1,0 1,0 2,0 5 6 197334 SHIFT STO A SHIFT MOd( ALPHA A , 793 ) = cho kết quả: 670 SHIFT MOd( ALPHA A x2 , 793 ) = cho kết quả: 62 SHIFT MOd( ALPHA A ^ 3 , 793 ) = cho kết quả: 304 (Lưu ý: A4 vượt quá 16 chữ số, kết quả không còn chính xác nữa) SHIFT MOd( ALPHA 304 ´ 62 , 793 ) = cho kết quả: 609. Tức là: SHIFT MOd( ALPHA 606 x2 , 793 ) = cho kết quả: 550. Tức là: . Tương tự: . Vậy: . Đáp số: 304 + Ta có: 2008 = 33´60 + 28, nên: ; Suy ra: . Đáp số: 672. 2,0 2,0 5 7 . Công thức truy hồi của un+2 có dạng: . Ta có hệ phương trình: Do đó: Tương tự: Quy trình bấm phím: 1 SHIFT STO A 10 SHIFT STO B 1SHIFT STO C 14 SHIFT STO D 2SHIFT STO X (Biến đếm) ALPHA X ALPHA = ALPHA X + 1 ALPHA : ALPHA E ALPHA = 10 ALPHA B - 13 ALPHA A ALPHA : ALPHA A ALPHA = ALPHA B ALPHA : ALPHA B ALPHA = ALPHA E ALPHA : ALPHA F ALPHA = 14 ALPHA D - 29 ALPHA C ALPHA : ALPHA C ALPHA = ALPHA D ALPHA : ALPHA D ALPHA = ALPHA F ALPHA : ALPHA Y ALPHA = 2 ALPHA E + 3 ALPHA F = = = ... (giá trị của E ứng với un+2, của F ứng với vn+2, của Y ứng với zn+2). Ghi lại các giá trị như sau: 1,0 1,0 1,0 1,0 2,0 5 8 Điểm trung bình của lớp 9A là: ; Phương sai: và độ lệch chuẩn là: . Điểm trung bình của lớp 9B là: ; Phương sai: và độ lệch chuẩn là: . Điểm trung bình của lớp 9C là: ; Phương sai: và độ lệch chuẩn là: . 1,0 1,0 1,0 3 9 Gọi a là số tháng gửi với lãi suất 0,7% tháng, x là số tháng gửi với lãi suất 0,9% tháng, thì số tháng gửi tiết kiệm là: a + 6 + x. Khi đó, số tiền gửi cả vốn lẫn lãi là: Quy trình bấm phím: 5000000 ´ 1.007 ^ ALPHA A ´ 1.0115 ^ 6 ´ 1.009 ^ ALPHA X - 5747478.359 ALPHA = 0 SHIFT SOLVE Nhập giá trị của A là 1 = Nhập giá trị đầu cho X là 1 = SHIFT SOLVE Cho kết quả X là số không nguyên. Lặp lại quy trình với A nhập vào lần lượt là 2, 3, 4, 5, ...đến khi nhận được giá trị nguyên của X = 4 khi A = 5. Vậy số tháng bạn Châu gửi tiết kiệm là: 5 + 6 + 4 = 15 tháng 2,0 2,0 1,0 5 10 a) Ta có: SHIFT STO A SHIFT STO B SHIFT STO C Suy ra: SHIFT STO D b) Ta có: SHIFT STO E SHIFT STO F SHIFT STO X Bán kính đường tròn nội tiếp tam giác ABD là: 1,0 0,5 1,0 0,5 0,5 1,0 0,5 1,0 1,0 7

File đính kèm:

  • doc20.doc
Giáo án liên quan