Bài 10. Cho ∆ ABC với góc A không vuông và góc B khác 135o. Gọi M là trung điểm của BC. Về phía ngoài ∆ ABC vẽ ∆ ABD vuông cân đáy AB. Đường thẳng qua A vuông góc với AB và đường thẳng qua C song song với MD cắt nhau tại E. Đường thẳng AB cắt CE tại P và DM tại Q . Chứng minh rằng Q là trung điểm của BP
32 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1935 | Lượt tải: 1
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án bồi dưỡng học sinh giỏi Toán 7, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHUYỀN ĐỀ BỒI DƯỠNG HSG TOÁN 7
PHẦN ĐẠI SỐ
Chuyền đề 1: Các bài toán thực hiện phép tính:
Các kiến thức vận dụng:
Tính chất của phép cộng , phép nhân
Các phép toán về lũy thừa:
an = ; am.an = am+n ; am : an = am –n ( a 0, mn)
(am)n = am.n ; ( a.b)n = an .bn ;
2 . Một số bài toán :
Bài 1: a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1)
b) Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1)
1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2)
Với n là số tự nhiên khác không.
HD : a) 1+2 + 3 + .. ..+ n = n(n+1)
1+ 3+ 5+ …+ (2n-1) = n2
b) 1.2+2.3+3.4+ …+ n(n+1)
= [1.2.(3 - 0) + 2.3.(4 - 1) + 3.4(5 – 2) + …..+ n(n + 1)( (n+2) – (n – 1))] : 3
= [ 1.2.3 – 1.2.3 + 2.3.4 – 2.3.4 +……+ n( n+1)(n+2)] : 3
= n(n+ 1)(n+2) :3
1.2.3 + 2.3.4+ 3.4.5 + ….+ n(n+1)(n+2)
= [ 1.2.3(4 – 0) + 2.3.4( 5 -1) + 3.4.5.(6 -2) + ……+ n(n+1)(n+2)( (n+3) – (n-1))]: 4
= n(n+1)(n+2)(n+3) : 4
Tổng quát:
Bài 2: a) Tính tổng : S = 1+ a + a2 +…..+ an
b) Tính tổng : A = với a2 – a1 = a3 – a2 = … = an – an-1 = k
HD: a) S = 1+ a + a2 +…..+ an aS = a + a2 +…..+ an + an+1
Ta có : aS – S = an+1 – 1 ( a – 1) S = an+1 – 1
Nếu a = 1 S = n
Nếu a khác 1 , suy ra S =
Áp dụng với b – a = k
Ta có : A =
=
=
Bài 3 : a) Tính tổng : 12 + 22 + 32 + …. + n2
b) Tính tổng : 13 + 23 + 33 + …..+ n3
HD : a) 12 + 22 + 32 + ….+ n2 = n(n+1)(2n+1): 6
b) 13 + 23 + 33 + …..+ n3 = ( n(n+1):2)2
Bài 3: Thùc hiÖn phÐp tÝnh:
a) A =
b)
HD : A = ; B =
Bài 4: 1, Tính: P =
2, Biết: 13 + 23 + . . . . . . .+ 103 = 3025.
Tính: S = 23 + 43 + 63 + . . . .+ 203
Bài 5: a) TÝnh
b) Cho
Chøng minh r»ng .
Bài 6: a) Tính :
b) TÝnh
HD: Nhận thấy 2011 + 1 = 2010+2 = ….
=
c)
Bài 7: a) TÝnh gi¸ trÞ cña biÓu thøc:
b) Chøng tá r»ng:
Bài 8: a) TÝnh gi¸ trÞ cña biÓu thøc:
b) Chøng minh r»ng tæng:
Chuyên đề 2: Bài toán về tính chất của dãy tỉ số bằng nhau:
Kiến thức vận dụng :
-
-Nếu thì với gt các tỉ số dều có nghĩa
- Có = k Thì a = bk, c = d k, e = fk
2. Bài tập vận dụng
Dạng 1 Vận dụng tính chất dãy tỉ số bằng nhau để chứng minh đẳng thức
Bài 1: Cho . Chứng minh rằng:
HD: Từ suy ra
khi đó
=
Bài 2: Cho a,b,c R và a,b,c 0 thoả mãn b2 = ac. Chứng minh rằng:
=
HD: Ta có (a + 2012b)2 = a2 + 2.2012.ab + 20122.b2 = a2 + 2.2012.ab + 20122.ac
= a( a + 2.2012.b + 20122.c)
(b + 2012c)2 = b2 + 2.2012.bc + 20122.c2 = ac+ 2.2012.bc + 20122.c2
= c( a + 2.2012.b + 20122.c)
Suy ra : =
Bài 3: Chøng minh r»ng nÕu th×
HD : Đặt a = kb, c = kd .
Suy ra : và
Vậy
Bài 4: BiÕt với a,b,c, d 0 Chứng minh rằng :
hoặc
HD : Ta có = (1)
= (2)
Từ (1) và (2) suy ra :
Xét 2 TH đi đến đpcm
Bài 5 : Cho tØ lÖ thøc . Chøng minh r»ng:
vµ
HD : Xuất phát từ biến đổi theo các
hướng làm xuất hiện
Bài 6 : Cho d·y tØ sè b»ng nhau:
TÝnh
HD : Từ
Suy ra :
Nếu a + b + c + d = 0 a + b = -( c+d) ; ( b + c) = -( a + d)
= -4
Nếu a + b + c + d 0 a = b = c = d = 4
Bài 7 : a) Chøng minh r»ng:
NÕu
Th×
b) Cho: .
Chøng minh:
HD : a) Từ
(1)
(2)
(3)
Từ (1) ;(2) và (3) suy ra :
Bài 8: Cho
chøng minh r»ng biÓu thøc sau cã gi¸ trÞ nguyªn.
HD Từ
Nếu x + y + z + t = 0 thì P = - 4
Nếu x + y + z + t 0 thì x = y = z = t P = 4
Bài 9 : Cho 3 số x , y , z khác 0 thỏa mãn điều kiện :
Hãy tính giá trị của biểu thức : B =
Bài 10 : a) Cho các số a,b,c,d khác 0 . Tính
T =x2011 + y2011 + z2011 + t2011
Biết x,y,z,t thỏa mãn:
b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn điều kiện:
M = a + b = c +d = e + f
Biết a,b,c,d,e,f thuộc tập N* và ;;
Cho 3 số a, b, c thỏa mãn : .
Tính giá trị của biểu thức : M = 4( a - b)( b – c) – ( c – a )2
Một số bài tương tự
Bài 11: Cho d·y tØ sè b»ng nhau:
TÝnh
Bài 12: Cho 3 số x , y , z, t khác 0 thỏa mãn điều kiện :
( n là số tự nhiên)
và x + y + z + t = 2012 . Tính giá trị của biểu thức P = x + 2y – 3z + t
Dạng 2 : Vận dụng tính chất dãy tỉ số bằng nhau để tìm x,y,z,…
Bài 1: Tìm cặp số (x;y) biết :
HD : Áp dông tÝnh chÊt d·y tØ sè b»ng nhau ta cã:
=> với y = 0 thay vào không thỏa mãn
Nếu y khác 0
=> -x = 5x -12
=> x = 2. Thay x = 2 vµo trªn ta ®îc:
=>1+ 3y = -12y => 1 = -15y => y =
VËy x = 2, y = tho¶ m·n ®Ò bµi
Bài 3 : Cho và a + b + c ≠ 0; a = 2012.
Tính b, c.
HD : từ a = b = c = 2012
Bài 4 : Tìm các số x,y,z biết :
HD: Áp dụng t/c dãy tỉ số bằng nhau:
(vì x+y+z 0)
Suy ra : x + y + z = 0,5 từ đó tìm được x, y, z
Bài 5 : Tìm x, biết rằng:
HD : Từ
Suy ra :
Bài 6: T×m x, y, z biÕt: (x, y, z )
HD : Từ
Từ x + y + z = x + y = - z , y +z = - x , z + x = - y thay vào đẳng thức ban đầu để tìm x.
Bài 7 : T×m x, y, z biÕt vµ
Bài 8 : Tìm x , y biết :
Chuyên đề 3: Vận dụng tính chất phép toán để tìm x, y
Kiến thức vận dụng :
Tính chất phép toán cộng, nhân số thực
Quy tắc mở dấu ngoặc, quy tắc chuyển vế
Tính chất về giá trị tuyệt đối : với mọi A ;
Bất đẳng thức về giá trị tuyệt đối :
dấu ‘=’ xẩy ra khi AB 0; dấu ‘= ‘ xẩy ra A,B >0
; với m > 0
Tính chất lũy thừa của 1 số thực : A2n 0 với mọi A ; - A2n 0 với mọi A
Am = An m = n; An = Bn A = B (nếu n lẻ ) hoặc A = B ( nếu n chẵn)
0< A < B An < Bn ;
Bài tập vận dụng
Dạng 1: Các bài toán cơ bản
Bài 1: Tìm x biết
a) x + 2x + 3x + 4x + …..+ 2011x = 2012.2013
b)
HD : a) x + 2x + 3x + 4x + …..+ 2011x = 2012.2013
x( 1 + 2 + 3 + ….+ 2011) = 2012.2013
b) Nhận xét : 2012 = 2011+1= 2010 +2 = 2009 +3 = 2008 +4
Từ
Bài 2 Tìm x nguyên biết
a)
b) 1- 3 + 32 – 33 + ….+ (-3)x =
Dạng 2 : Tìm x có chứa giá trị tuyệt đối
Dạng : và
Khi giải cần tìm giá trị của x để các GTTĐ bằng không, rồi so sánh các giá trị đó để chia ra các khoảng giá trị của x ( so sánh –a và –b)
Bài 1 : Tìm x biết :
a) b)
HD : a) (1) do VT =
nên VP = x – 2012 (*)
Từ (1)
Kết hợp (*) x = 4023:2
b) (1)
Nếu x 2010 từ (1) suy ra : 2010 – x + 2011 – x = 2012 x = 2009 :2 (lấy)
Nếu 2010 < x < 2011 từ (1) suy ra : x – 2010 + 2011 – x = 2012 hay 1 = 2012 (loại)
Nếu x từ (1) suy ra : x – 2010 + x – 2011 = 2012 x = 6033:2(lấy)
Vậy giá trị x là : 2009 :2 hoặc 6033:2
Một số bài tương tự:
Bài 2 : a) T×m x biÕt
T×m x biÕt:
T×m x biÕt:
Bài 3 : a)T×m c¸c gi¸ trÞ cña x ®Ó:
Tìm x biết:
Bài 4 : tìm x biết :
a) b)
Dạng : Sử dụng BĐT giá trị tuyệt đối
Bài 1 : a) Tìm x ngyên biết :
b) Tìm x biết :
HD : a) ta có (1)
Mà suy ra ( 1) xẩy ra dấu “=”
Hay do x nguyên nên x {3;4;5}
b) ta có (*)
Mà nên (*) xẩy ra dấu “=”
Suy ra:
Các bài tương tự
Bài 2 : Tìm x nguyên biết :
Bài 3 : Tìm x biết
Bài 4 : T×m x, y tho¶ m·n: = 3
Bài 5 : Tìm x, y biết :
HD : ta có với mọi x,y và với mọi x
Suy ra : với mọi x,y mà
Bài 6 : T×m c¸c sè nguyªn x tho¶ m·n.
Dạng chứa lũy thừa của một số hữu tỉ
Bài 1: Tìm số tự nhiên x, biết :
a) 5x + 5x+2 = 650 b) 3x-1 + 5.3x-1 = 162
HD : a) 5x + 5x+2 = 650 5x ( 1+ 52) = 650 5x = 25 x = 2
3x-1 + 5.3x-1 = 162 3x -1(1 + 5) = 162 3x – 1 = 27 x = 4
Bài 2 : Tìm các số tự nhiên x, y , biết:
a) 2x + 1 . 3y = 12x b) 10x : 5y = 20y
HD : a) 2x + 1 . 3y = 12x
Nhận thấy : ( 2, 3) = 1 x – 1 = y-x = 0 x = y = 1
b) 10x : 5y = 20y 10x = 102y x = 2y
Bài 3 : Tìm m , n nguyên dương thỏa mãn :
a) 2m + 2n = 2m +n b) 2m – 2n = 256
HD: a) 2m + 2n = 2m +n 2m + n – 2m – 2n = 0 2m ( 2n – 1) –( 2n – 1) = 1
(2m -1)(2n – 1) = 1
b) 2m – 2n = 256 2n ( 2m – n - 1) = 28
Dễ thấy m n, ta xét 2 trường hợp :
+ Nếu m – n = 1 n = 8 , m = 9
+ Nếu m – n 2 thì 2m – n – 1 là 1 số lẻ lớn hơn 1, khi đó VT chứa TSNT khác 2, mà VT chỉ chứa TSNT 2 suy ra TH này không xẩy ra : vậy n = 8 , m = 9
Bài 4 : Tìm x , biết :
HD :
Bài 5 : Tìm x, y biết :
HD : ta có với mọi x,y và (y – 1)2012 0 với mọi y
Suy ra : với mọi x,y . Mà
Các bài tập tương tự :
Bài 6 : Tìm x, y biết :
a) b)
Chuyên đề 4: Giá trị nguyên của biến , giá trị của biểu thức :
1 . Các kiến thức vận dụng:
- Dấu hiệu chia hết cho 2, 3, 5, 9
- Phân tích ra TSNT, tính chất của số nguyên tố, hợp số , số chính phương
- Tính chất chia hết của một tổng , một tích
- ƯCLN, BCNN của các số
2. Bài tập vận dụng :
* Tìm x,y dưới dạng tìm nghiệm của đa thức
Bài 1: a) T×m c¸c sè nguyªn tè x, y sao cho: 51x + 26y = 2000
b) T×m sè tù nhiªn x, y biÕt:
c) T×m x, y nguyªn biÕt: xy + 3x - y = 6
d) T×m mäi sè nguyªn tè tho¶ m·n : x2-2y2=1
HD: a) Từ 51x + 26y = 2000 17.3.x = 2.( 1000 – 13 y) do 3,17 là số NT nên x mà x NT x = 2. Lại có 1000 – 13y , 1000 – 13y > 0 và y NT y =
b) Từ (1)
do 7(x–2004)2 0
Mặt khác 7 là số NT vậy y = 3 hoặc y = 4 thay vào (1)
suy ra : x= 2005 ,y =4 hoặc x = 2003, y = 4
Ta có xy + 3x - y = 6 ( x – 1)( y + 3) = 3 hoặc
hoặc hoặc
x2-2y2=1
do VP = 2y2 chia hết cho 2 suy ra x > 2 , mặt khác y nguyên tố
Bài 2 a) Tìm các số nguyên thỏa mãn : x – y + 2xy = 7
b) Tìm biết:
HD : a) Từ x – y + 2xy = 7 2x – 2y + 2xy = 7 (2x - 1)( 2y + 1) = 13
b) Từ y2 25 và 25 – y2 chia hết cho 8 , suy ra y = 1 hoặc y = 3 hoặc y = 5 , từ đó tìm x
Bài 3 a) T×m gi¸ trÞ nguyªn d¬ng cña x vµ y, sao cho:
b) T×m c¸c sè a, b, c nguyªn d¬ng tho¶ m·n :
vµ
HD : a) Từ 5 ( x + y) = xy (*)
+ Với x chia hết cho 5 , đặt x = 5 q ( q là số tự nhiên khác 0) thay vào (*) suy ra:
5q + y = qy 5q = ( q – 1 ) y . Do q = 1 không thỏa mãn , nên với q khác 1 ta có Ư(5) , từ đó tìm được y, x
b) a2 ( a +3) = 5b – 5 , mà a2. 5c = 5( 5b – 1 – 1)
Do a, b, c nguyên dương nên c = 1( vì nếu c >1 thì 5b – 1 - 1 không chia hết cho 5 do đó a không là số nguyên.) . Với c = 1 a = 2 và b = 2
Bài 4: T×m c¸c cÆp sè nguyªn tè p, q tho¶ m·n:
HD :
Do p nguyên tố nên và 2013 – q2 > 0 từ đó tìm được q
Bài 5 : T×m tÊt c¶ c¸c sè nguyªn d¬ng n sao cho: chia hÕt cho 7
HD : Với n < 3 thì 2n không chia hết cho 7
Với n khi đó n = 3k hoặc n = 3k + 1 hoặc n = 3k + 2 ( )
Xét n = 3k , khi đó 2n -1 = 23k – 1 = 8k – 1 = ( 7 + 1)k -1 = 7.A + 1 -1 = 7.A
Xét n = 3k +1 khi đó 2n – 1 = 23k+1 – 1 = 2.83k – 1 = 2.(7A+1) -1 = 7A + 1 không chia hết cho 7
Xét n = 3k+2 khi đó 2n – 1 = 23k +2 -1 = 4.83k – 1 = 4( 7A + 1) – 1 = 7 A + 3 không chia hết cho 7 . Vậy n = 3k với
* Tìm x , y để biểu thức có giá trị nguyên, hay chia hết:
Bài 1 T×m sè nguyªn m ®Ó:
a) Gi¸ trÞ cña biÓu thøc m -1 chia hÕt cho gi¸ trÞ cña biÓu thøc 2m + 1.
b)
HD : a) Cách 1 : Nếu m >1 thì m -1 < 2m +1 , suy ra m -1 không chia hết cho 2m +1
Nếu m < -2 thì , suy ra m -1 không chia hết cho 2m +1
Vậy m { -2; -1; 0; 1}
Cách 2 : Để
b) - 3 < 3m – 1 < 3 vì m nguyên
Bài 2 a) T×m x nguyªn ®Ó 6 chia hÕt cho 2
b) T×m ®Ó AÎ Z vµ t×m gi¸ trÞ ®ã.
A = . HD: A = =
Bài 3: Tìm x nguyên để
HD : =
để x là số CP.
Với x >1 và x là số CP thì suy ra 2009 không chia hết cho
Với x = 1 thay vào không thỏa mãn
Với x = 0 thì
Chuyên đề 5 : Giá trị lớn nhất , giá trị nhỏ nhất của biểu thức:
1.Các kiến thức vận dụng :
* a2 + 2.ab + b2 = ( a + b)2 0 với mọi a,b
* a2 – 2 .ab + b2 = ( a – b)2 0 với mọi a,b
*A2n 0 với mọi A, - A2n 0 với mọi A
* ,
* dấu “ = ” xẩy ra khi A.B 0
* dấu “ = ” xẩy ra khi A,B 0
2. Bài tập vận dụng:
* Dạng vận dụng đẳng thức : a2 + 2.ab + b2 = ( a + b)2 0 với mọi a,b
Và a2 – 2 .ab + b2 = ( a – b)2 0 với mọi a,b
Bài 1: Tìm giá trị nhỏ nhất của các đa thức sau:
a) P(x) = 2x2 – 4x + 2012
b) Q(x) = x2 + 100x – 1000
HD : a) P(x) = 2x2 – 4x + 2012 = 2(x2 – 2.x. + 12 ) + 2010 = 2( x – 1)2 + 2010
Do ( x - 1)2 0 với mọi x , nên P(x) 2010 . Vậy Min P(x) = 2010
khi ( x - 1)2 = 0 hay x = 1
b) Q(x) = x2 + 100x – 1000 = ( x + 50)2 – 3500 - 3500 với mọi x
Vậy Min Q(x) = -3500
Từ đây ta có bài toán tổng quát : Tìm GTNN của đa thức P(x) = a x2 + bx +c ( a > 0)
HD: P(x) = a x2 + bx +c = a( x2 + 2.x. + ) + ( c - )
= a( Vậy Min P(x) = khi x =
Bài 2 : Tìm giá trị nhỏ nhất của các biểu thức sau:
A = - a2 + 3a + 4
B = 2 x – x2
HD : a) A = - a2 + 3a + 4 =
Do nên A . Vậy Max A = khi a =
B = . Do
Vậy Max B = 1 khi x = 1
Bài 3 : Tìm giá trị lớn nhất của các biểu thức sau:
a) P = b) Q =
* Dạng vận dụng A2n 0 với mọi A, - A2n 0 với mọi A
Bài 1 : Tìm GTNN của biểu thức :
a) P = ( x – 2y)2 + ( y – 2012)2012
b) Q = ( x + y – 3)4 + ( x – 2y)2 + 2012
HD : a) do và suy ra : P với mọi x,y
Min P = 0 khi
b) Ta có và suy ra : Q 2012 với mọi x,y
Min Q = 2012 khi
Bài 3 : Tìm GTLN của R =
Bài 4 : Cho ph©n sè: (x Î Z)
a) T×m x Î Z ®Ó C ®¹t gi¸ trÞ lín nhÊt, t×m gi¸ trÞ lín nhÊt ®ã.
b) T×m x Î Z ®Ó C lµ sè tù nhiªn.
HD :
C lớn nhất khi lớn nhất nhỏ nhất và
Vậy Max C = khi x = 2
Bài 5 : T×m sè tù nhiªn n ®Ó ph©n sè cã gi¸ trÞ lín nhÊt
HD : Ta có
Để lớn nhất thì lớn nhất và 14n – 21 có giá trị nhỏ nhất và n nhỏ nhất n = 2
* Dạng vận dụng ,
dấu “ = ” xẩy ra khi A.B 0
dấu “ = ” xẩy ra khi A,B 0
Bài 1: Tìm giá trị nhỏ nhất của biểu thức
A = ( x – 2)2 + + 3
B =
HD: a) ta có với mọi x và với mọi x,y A 3 với mọi x,y
Suy ra A nhỏ nhất = 3 khi
Ta có với mọi x 2012 với mọi x
với mọi x, suy ra Min B = khi x = 2010
Bài 2 : Tìm giá trị nhỏ nhất của các biểu thức
a)
b)
c) C =
HD : a) Ta có =
với mọi x với x . Vậy Min A = 1 Khi
b) ta có
Do với mọi x (1)
Và với mọi x (2)
Suy ra B . Vậy Min B = 2 khi BĐT (1) và (2) xẩy ra dấu “=” hay
Ta có
=
= 99 + 97 + ....+ 1 = 2500
Suy ra C với mọi x . Vậy Min C = 2500 khi
Chuyên đề 6 : Dạng toán chứng minh chia hết
1.Kiến thức vận dụng
* Dấu hiệu chia hết cho 2, 3, 5, 9
* Chữ số tận cùng của 2n, 3n ,4n, 5n ,6n, 7n, 8n, 9n
* Tính chất chia hết của một tổng
2. Bài tập vận dụng:
Bài 1 : Chứng minh rằng : Với mọi số nguyên dương n thì :
chia hết cho 10
HD: ta có =
=
=
= 10( 3n -2n)
Vậy 10 với mọi n là số nguyên dương.
Bài 2 : Chứng tỏ rằng:
A = 75. (42004 + 42003 + . . . . . + 42 + 4 + 1) + 25 là số chia hết cho 100
HD: A = 75. (42004 + 42003 + . . . . . + 42 + 4 + 1) + 25 = 75.( 42005 – 1) : 3 + 25
= 25( 42005 – 1 + 1) = 25. 42005 chia hết cho 100
Bài 3 : Cho m, n N* và p là số nguyên tố thoả mãn: = (1)
Chứng minh rằng : p2 = n + 2
HD : + Nếu m + n chia hết cho p do p là số nguyên tố và m, n N*
m = 2 hoặc m = p +1 khi đó từ (1) ta có p2 = n + 2
+ Nếu m + n không chia hết cho p , từ ( 1) (m + n)(m – 1) = p2
Do p là số nguyên tố và m, n N* m – 1 = p2 và m + n =1
m = p2 +1 và n = - p2 < 0 (loại)
Vậy p2 = n + 2
Bài 4: a) Sè cã chia hÕt cho 3 kh«ng ? Cã chia hÕt cho 9 kh«ng ?
b) Chøng minh r»ng: chia hÕt cho 7
HD: a) Ta có 101998 = ( 9 + 1)1998 = 9.k + 1 ( k là số tự nhiên khác không)
4 = 3.1 + 1
Suy ra : = ( 9.k + 1) – ( 3.1+1) = 9k -3 chia hết cho 3 , không chia hết cho 9
Ta có 3638 = (362)19 = 129619 = ( 7.185 + 1) 19 = 7.k + 1 ( k N*)
4133 = ( 7.6 – 1)33 = 7.q – 1 ( q N*)
Suy ra : = 7k + 1 + 7q – 1 = 7( k + q)
Bài 5 :
Chøng minh r»ng: chia hÕt cho 30 víi mäi n nguyªn d¬ng
Chøng minh r»ng: 2a - 5b + 6c 17 nÕu a - 11b + 3c 17 (a, b, c Î Z)
Bài 6 : a) Chøng minh r»ng: (a, b Î Z )
b) Cho ®a thøc (a, b, c nguyªn).
CMR nÕu f(x) chia hÕt cho 3 víi mäi gi¸ trÞ cña x th× a, b, c ®Òu chia hÕt cho 3
HD a) ta có 17a – 34 b và 3a + 2b
vì (2, 7) = 1
Ta có f(0) = c do f(0)
f(1) - f(-1) = (a + b + c) - ( a – b + c) = 2b , do f(1) và f(-1) chia hết cho 3 vì ( 2, 3) = 1
f(1) do b và c chia hết cho 3
Vậy a, b, c đều chia hết cho 3
Bài 7 : a) Chøng minh r»ng lµ mét sè tù nhiên
b) Cho lµ sè nguyªn tè (n > 2). Chøng minh lµ hîp sè
HD : b) ta có (2n +1)( 2n – 1) = 22n -1 = 4n -1 (1) .Do 4n- 1 chia hêt cho 3 và lµ sè nguyªn tè (n > 2) suy ra 2n -1 chia hết cho 3 hay 2n -1 là hợp số
Chuyên đề 7 : Bất đẳng thức
1.Kiến thức vận dụng
* Kỹ thuật làm trội : Nếu a1 < a2 < a3 <…. < an thì n a1 < a1 + a2 + … + an < nan
* a(a – 1) < a2 < a( a+1)
* a2 + 2.ab + b2 = ( a + b)2 0 , * a2 – 2 .ab + b2 = ( a – b)2 0 với mọi a,b
2.Bài tập vận dụng
Bài 1: Cho a, b, c > 0 . Chøng tá r»ng: kh«ng lµ sè nguyªn.
HD : Ta có
Mặt khác
= 3 – N Do N >1 nên M < 2
Vậy 1 < M < 2 nên M không là số nguyên
Bài 2 Chứng minh rằng : (1) , (2) với a, b, c
HD : (*)
Do (*) đúng với mọi a,b nên (1) đúng
Bài 3 : Với a, b, c là các số dương . Chứng minh rằng
a) (1) b) (2)
HD : a) Cách 1 : Từ (*)
Do (*) đúng suy ra (1) đúng
Cách 2: Ta có và
Dấu “ =” xẩy ra khi a = b
Ta có :
Lại có
Suy ra Dấu “ = ” xẩy ra khi a = b = c
Bài 4 : a) Cho z, y, z lµ c¸c sè d¬ng.
Chøng minh r»ng:
b) Cho a, b, c tho¶ m·n: a + b + c = 0. Chøng minh r»ng: .
HD : b) Tính ( a + b + c)2 từ cm được
Chuyên đề 8 : Các bài toán về đa thức một ẩn
Bài 1 : Cho đa thức P(x) = a x3 + bx2 + cx + d ( a khác 0)
Biết P(1) = 100 , P( -1) = 50 , P(0) = 1 , P( 2) = 120 . Tính P(3)
HD : ta có P(1) = 100 a + b + c + d = 100
P(-1) = 50 - a + b – c + d = 50
P( 0) = 1 d = 1
P(2) = 8a + 4b + c + d = 120
Từ đó tìm được c, d, và a và XĐ được P(x)
Bài 2 : Cho víi a, b, c lµ c¸c sè h÷u tØ.
Chøng tá r»ng: . BiÕt r»ng
HD : f( -2) = 4a – 2b + c và f(3) = 9a + 3b + c f(-2).f(3) =(4a – 2b + c)( 9a + 3b + c)
Nhận thấy ( 4a – 2b + c) + ( 9a + 3b + c) = 13a + b + 2c = 0
( 4a – 2b + c ) = - ( 9a + 3b + c)
Vậy f(-2).f(3) = - ( 4a – 2b + c).( 4a – 2b + c) = - ( 4a -2b + c)2 0
Bài 3 Cho ®a thøc víi a, b, c lµ c¸c sè thùc. BiÕt r»ng f(0); f(1); f(2) cã gi¸ trÞ nguyªn. Chøng minh r»ng 2a, 2b cã gi¸ trÞ nguyªn.
HD : f(0) = c , f(1) = a + b + c , f(2) = 4a + 2b + c
Do f(0) ,f(1), f(2) nguyên c , a + b + c và 4a + 2b + c nguên
a + b và 4a + 2b = 2 (a + b) + 2a = 4( a + b) -2b ngyên 2a , 2b nguyên
Bài 4 Chøng minh r»ng: f(x) cã gi¸ trÞ nguyªn víi mäi x nguyªn khi vµ chØ khi 6a, 2b, a + b + c vµ d lµ sè nguyªn
HD : f(0) = d , f(1) = a + b + c + d , f(2) = 8a +4 b + c + d
Nếu f(x) có giá trị nguyên với mọi x d , a + b + c + d, 8a +4b + c + d là các số nguyên . Do d nguyên a + b + c nguyên và (a + b + c + d) + (a + b +c +) +2b nguyên 2b nguyên 6a nguyên . Chiều ngược lại cm tương tự.
Bài 5 : T×m tæng c¸c hÖ sè cña ®a thøc nhËn ®îc sau khi bá dÊu ngoÆc trong biÓu thøc: A(x) =
HD : Giả sử A( x) = ao + a1x + a2x2 + …..+ a4018x4018
Khi đó A(1) = ao + a1 +a2 + …….+ a4018
do A(1) = 0 nên ao + a1 +a2 + …….+ a4018 = 0
Bài 6 : Cho x = 2011. TÝnh gi¸ trÞ cña biÓu thøc:
HD : Đặt A =
tại x = 2012 thì A = 2011
Chuyên đề 9 Các bài toán thực tế
Kiến thức vận dụng
Tính chất đại lượng tỉ lệ thuận :
Đại lượng y tỉ lệ thuận với đại lượng x khi và chỉ khi :
y = k.x ( k là hệ số tỉ lệ )
- Tính chất đại lượng tỉ lệ nghịch :
Đại lượng y và đại lượng x được gọi là hai đại lượng tỉ lệ nghịch khi :
x.y = a ( a là hệ số tỉ lệ )
- Tính chất dãy tỉ số bằng nhau.
2. Bài tập vận dụng
*Phương pháp giải :
Đọc kỹ đề bài , từ đó xác định các đại lượng trong bài toán
Chỉ ra các đại lượng đã biết , đại lượng cần tìm
Chỉ rõ mối quan hệ giữa các đại lượng ( tỉ lệ thuận hay tỉ lệ nghịch)
Áp dụng tính chất về đại lượng tỉ lệ và tính chất dãy tỉ số bằng nhau để giải
Bài 1 : Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây
Bài 2 : Ba líp 7A,7B,7C cã 94 häc sinh tham gia trång c©y. Mçi häc sinh líp 7A trång ®îc 3 c©y, Mçi häc sinh líp 7B trång ®îc 4 c©y, Mçi häc sinh líp 7C trång ®îc 5 c©y,. Hái mçi líp cã bao nhiªu häc sinh. BiÕt r»ng sè c©y mçi líp trång ®îc ®Òu nh nhau.
Bài 3 : Mét « t« ph¶i ®i tõ A ®Õn B trong thêi gian dù ®Þnh. Sau khi ®i ®îc nöa qu·ng ®êng « t« t¨ng vËn tèc lªn 20 % do ®ã ®Õn B sím h¬n dù ®Þnh 10 phót.
TÝnh thêi gian « t« ®i tõ A ®Õn B.
Bài 4 : Trªn qu·ng ®êng AB dµi 31,5 km. An ®i tõ A ®Õn B, B×nh ®i tõ B ®Õn A. VËn tèc An so víi B×nh lµ 2: 3. §Õn lóc gÆp nhau, thêi gian An ®i so víi B×nh ®i lµ 3: 4.
TÝnh qu·ng ®êng mçi ngêi ®i tíi lóc gÆp nhau ?
Bài 5 : Ba đội công nhân làm 3 công việc có khối lượng như nhau. Thời gian hoàn thành công việc của đội І, ІІ, ІІІ lần lượt là 3, 5, 6 ngày. Biêt đội ІІ nhiều hơn đội ІІІ là 2 người và năng suất của mỗi công nhân là bằng nhau. Hỏi mỗi đội có bao nhiêu công nhân ?
Bài 6 : Ba ô tô cùng khởi hành đi từ A về phía B . Vận tốc ô tô thứ nhất kém ô tô thứ hai là 3 Km/h . Biết thơi gian ô tô thứ nhất, thứ hai và thứ ba đi hết quãng đường AB lần lượt là : 40 phút, giờ , giờ . Tính vận tốc mỗi ô tô ?
PHẦN HÌNH HỌC
Một số phương pháp chứng minh hình hoc
1.Chứng minh hai đoạn thẳng bằng nhau:
P2 : - Chứng minh hai tam giác bằng nhau chứa hai đoạn thẳng đó
- Chứng minh hai đoạn thẳng đó là hai cạnh bên của một tam giác cân
- Dựa vào tính chất đường trung tuyến, đường trung trực của đoạn thẳng
- Dựa vào định lí Py-ta- go để tính độ dài đoạn thẳng
2.Chứng minh hai góc bằng nhau:
P2 : - Chứng minh hai tam giác bằng nhau chứa hai góc đó
- Chứng minh hai góc đó là hai góc ở đáy của một tam giác cân
- Chứng minh hai đường thẳng song song mà hai góc đó là cặp góc so le trong ,đồng vị
- Dựa vào tính chất đường phân giác của tam giác
3. Chứng minh ba điểm thẳng hàng:
P2 : - Dựa vào số đo của góc bẹt ( Hai tia đối nhau)
- Hai đường thẳng cùng vuông góc với đường thẳng thứ 3 tại một điểm
- Hai đường thẳng đi qua một điểm và song song với đường thẳng thứ 3
- Dựa vào tính chất 3 đường trung tuyến, phân giác, trung trực, đường cao
4. Chứng minh hai đường thẳng vuông góc
P2 : - Tính chất của tam giác vuông, định lí Py – ta – go đảo
- Qua hệ giữa đường thẳng song song và đường thẳng vuông góc
- Tính chất 3 đường trung trực, ba đường cao
5 . Chứng minh 3 đường thẳng đồng quy( đi qua một điểm )
P2 : - Dựa vào tính chất của các đường trong tam giác
6. So sánh hai đoạn thẳng, hai góc :
P2 : - Gắn hai đoạn thẳng , hai góc vào một tam giác từ đó vận định lí về quan hệ giữa cạnh và góc đối diện trong một tam giác , BĐT tam giác
Dựa vào định lí về quan hệ giữa đường xiên và hình chiếu, đường xiên và đường vuông góc .
Bài tập vận dụng
Bài 1 : Cho tam gi¸c ABC cã ¢ < 900. VÏ ra phÝa ngoµi tam gi¸c ®ã hai ®o¹n th¼ng AD vu«ng gãc vµ b»ng AB; AE vu«ng gãc vµ b»ng AC.
Chøng minh: DC = BE vµ DC BE
HD:
Phân tích tìm hướng giải
*Để CM DC = BE cần CM ∆ABE = ∆ ADC ( c.g.c)
Có : AB = AD, AC = AE (gt)
Cần CM :
Có :
* Gọi I là giao điểm của AB và CD
Để CM : DC BE cần CM
Có ( Hai góc đối đỉnh) và
Cần CM ( vì ∆ABE = ∆ ADC)
Lời giải
a) Ta có , mặt khác AB = AD, AC = AE (gt)
Suy ra ∆ABE = ∆ ADC(c.g.c) DC = BE
b) Gọi I là giao điểm của AB và CD
Ta có ( Hai góc đối đỉnh) , ( ∆ ADI vuông tại A) và ( vì ∆ABE = ∆ ADC) DC BC
*Khai thác bài 1:
Từ bài 1 ta thấy : DC = BE vµ DC BE khi ∆ABD và ∆ ACE vuông cân, vậy nếu có ∆ABD và ∆ ACE vuông cân , Từ B kẻ BK CD tại D thì ba điểm E, K, B thẳng hàng
Ta có bài toán 1.2
Bài 1. 1: Cho tam gi¸c ABC cã ¢ < 900. VÏ ra phÝa ngoµi tam gi¸c ®ã hai ®o¹n th¼ng AD vu«ng gãc vµ b»ng AB; AE vu«ng gãc vµ b»ng AC . Từ B kẻ BK CD tại K
Chứng minh rằng ba điểm E, K, B thẳng hàng
HD : Từ bài 1 chứng minh được DC BE mà BK CD tại K suy ra ba điểm E, K, B thẳng hàng
*Khai thác bài 1.1
Từ bài 1.1 nếu gọi M là trung điểm của DE kẻ tia M A thì MA BC từ đó ta có bài toán 1.2
Bài 1.2: Cho tam gi¸c ABC cã ¢ < 900. VÏ ra phÝa ngoµi tam gi¸c ®ã hai ®o¹n th¼ng AD vu«ng gãc vµ b»ng AB; AE vu«ng gãc vµ b»ng AC . Gọi M là trung điểm của DE kẻ tia M A . Chứng minh rằng : MA BC
Phân tích tìm hướng giải
HD: Gọi H là giao điểm của tia MA và BC
Để CM MA BC ta cần CM ∆AHC vuông tại H
Để CM ∆AHC vuông tại H ta cần tạo ra 1 tam giác
vuông bằng ∆AHC
Trên tia AM lấy điểm N sao cho AM = MN
Kẻ DQ AM tại Q
Cần CM ∆AHC = ∆DQN (g.c.g)
CM: ND = AC , ,
CM : ∆ABC = ∆DNA ( c.g.c)
Có AD = AB (gt)
Cần CM : ND = AE ( = AC) và
+ Để CM ND = AE
CM : ∆MDN = ∆MEA (c.g.c)
+ Để CM
vì
CM AE // DN (∆MDN = ∆MEA)
Lời giải
Gọi H là giao điểm của tia MA và BC , Trên tia AM lấy điểm N sao cho AM = MN
kẻ DQ AM tại Q
Ta có ∆MDN = ∆MEA ( c.g.c) vì :
AM = MN ; MD = ME (gt) và ( hai góc đối đỉnh)
DN = AE ( = AC) và AE // DN vì ( cặp góc so le trong )
( cặp góc trong cùng phía) mà
Xét ∆ABC và ∆DNA có : AB = AD (gt) , AC = DN và ( chứng minh trên ) ∆ABC = ∆DNA (c.g.c)
Xét ∆AHC và ∆DQN có : AC = DN , và
∆AHC = ∆DQN (g.c.g) ∆AHC vuông tại H hay MA BC
* Khai thác bài toán 1.3
+ Từ bài 1.2 ta thấy với M là trung điểm của DE thì tia MABC , ngược lại
nếu AH BC tại H thì tia HA sẽ đi qua trung điểm M của DE , ta có bài toán 1.4
Bài 1.3 : Cho tam gi¸c ABC cã ¢ < 900. VÏ ra phÝa ngoµi tam gi¸c ®ã hai ®o¹n th¼ng AD vu«ng gãc vµ b»ng AB; AE vu«ng gãc vµ b»ng AC . Gọi H là chân đường vuông góc kẻ từ A đến BC . Chứng minh rằng tia HA đi qua trung điểm của đoạn thẳng DE
HD : Từ bài 1.2 ta có định hướng giải như sau:
Kẻ
File đính kèm:
- Chuyen de boi duong hoc sinh gioi mon Toan.doc