I. MỤC TIÊU
1. Kiến thức: HS được rèn luyện về các phương pháp phân tích đa thức thành nhân tử (ba phương pháp cơ bản) .
2. Kĩ năng: HS biết thêm phương pháp “tách hạng tử” , cộng , trừ thêm cùng một số hoặc cùng một hạng tử vào biểu thức
3. Thái độ: Có ý thức học tập. Rèn tính cẩn thận, tư duy sáng tạo.
II. TIẾN TRÌNH DẠY – HỌC
2 trang |
Chia sẻ: oanh_nt | Lượt xem: 931 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án Đại số 8 năm học 2012- 2013 Tiết 14 Luyện Tập, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Thứ 2, ngày 8 tháng 10 năm 2012.
Tiết 14. LUYỆN TẬP
I. MỤC TIÊU
1. Kiến thức: HS được rèn luyện về các phương pháp phân tích đa thức thành nhân tử (ba phương pháp cơ bản) .
2. Kĩ năng: HS biết thêm phương pháp “tách hạng tử” , cộng , trừ thêm cùng một số hoặc cùng một hạng tử vào biểu thức
3. Thái độ: Có ý thức học tập. Rèn tính cẩn thận, tư duy sáng tạo.
II. TIẾN TRÌNH DẠY – HỌC
Hoạt động của thầy
Hoạt động của trò
Hoạt động 1: KIỂM TRA BÀI CŨ (5 ph)
1. Chữa bài tập 52 SGK
2. Chữa bài tập 54 (a, c) SGK
2 HS lên bảng thực hiện
Hoạt động 2: LUYỆN TẬP (12 ph)
Bài 55 SGK
Bài 56 SGK
Bài 55
a)
b) (2x – 1)2 – (x + 3)2 = 0
[(2x – 1) – (x + 3)][(2x – 1) + (x + 3)] = 0
(2x – 1 – x – 3)(2x – 1 + x + 3) = 0
(x – 4)(3x + 2) = 0
Bài 56
a)
Thay x = 49,75 vào biểu thức ta có
(49,75 + 0,25)2 = 502 = 2500
b) x2 – y2 – 2y – 1 = x2 – (y2 + 2y + 1)2
= x2 – (y + 1)2 = (x – y – 1)(x + y + 1)
Thay x = 93, y = 6 ta được
(93 – 6 – 1)(93 + 6 + 1) = 86.100 = 8600
Hoạt động 3. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
BẰNG VÀI PHƯƠNG PHÁP KHÁC
Bài 53 SGK
a) x 2 – 3x + 2 là một tam thức bậc 2 có dạng ax2 + bx + c với a = 1; b = -3; c = 2
Đầu tiên ta lập tích a.c = 1.2 = 2
- Tìm xem 2 là tích của các cặp số nguyên nào?
- Trong 2 cặp số đó, ta thấy có (-1) + (-2) = -3 đúng bằng hệ số của b
Ta tách -3x = -x – 2x
Vậy đa thức x2 – 3x + 2 được biến đổi thành x2 – x – 2x + 2
Đến đây, hãy phân tích tiếp đa thức thành nhân tử.
Tương tự hãy phân tích đa thức
x2 + 5x + 6
Tổng quát:
ax2 + bx + c = ax2 + b1x + b2x + c
Phải có
Cách tách khác
x2 – 3x + 2 = x2 – 4 – 3x + 6
= (x2 – 4) – (3x – 6)
= (x – 2)(x + 2) – 3(x – 2)
= (x – 2)(x + 2 – 3) = (x – 2)(x – 1)
Bài 57 (d) Phân tích đa thức x4 + 4 ra thừa số.
Gợi ý: Có thể dùng phương pháp tách hạng tử để phân tích đa thức không?
Để làm bài này ta phải dùng phương pháp thêm bớt hạng tử
Ta nhận thấy: x4 = (x2)2 ; 4 = 22
Để xuất hiện hằng đẳng thức bình phương của 1 tổng, ta cần thêm 2.x2.2 = 4x2, vậy phải bớt 4x2 để giá trị đa thức không thay đổi
x4 + 4 = x4 + 4x2 + 4 – 4x2
HS: 2 = 1.2 = (-1).(-2)
HS: = x(x – 1) – 2(x – 1)
= (x – 1)(x – 2)
b) = x2 + 2x + 3x + 6
= x(x + 2) + 3(x + 2) = (x + 2)(x + 3)
HS làm tiếp
= (x2 + 2)2 – (2x)2 = (x2 + 2 – 2x)(x2 + 2 + 2x)
Hoạt động 3: CỦNG CỐ (6 phút)
Phân tích các đa thức sau thành nhân tử
15x2 + 15xy – 3x – 3y
x2 + x – 6
4x4 + 1
a) = 3[5x2 + 5xy – x – y]
= 3[5x(x + y) – (x + y)] = 3(x + y)(5x – 1)
b) = x2 + 3x – 2x – 6 = x(x + 3) – 2(x + 3)
= (x + 3)(x – 2)
c) = 4x4 + 4x2 + 1 – 4x2 = (2x2 + 1)2 – (2x)2
= (2x2 + 1 – 2x)(2x2 + 1 + 2x)
HƯỚNG DẪN VỀ NHÀ
- Học lại các hằng đẳng thức phương pháp phân tích các đa thức thành nhân tử
- Làm bài tập 57, 58 SGK; 35; 36; 37; 38 SBT
- Ôn lại quy tắc chia 2 lũy thừa cùng cơ số
File đính kèm:
- Tiet 14.doc