I.Mục tiêu:
-Học sinh biết nhận biết vế trái, vế phải, biết dùng dấu của bất đẳng thức, biết tính chất liên hệ giữa thứ tự với phép cộng ở dạng bất đẳng thức.
-Biết chứng minh bất đẳng thức nhờ so sánh giá trị các vế ở bất đẳng thức hoặc vận dụng tính chất liên hệ thứ tự và phép cộng (ở mức đơn giản)
II.Chuẩn bị:
-Hình vẽ minh hoạ thứ tự các số trên trục số
-Bảng phụ bài ?1; tính chất của bất đẳng thức
III.Tiến trình lên lớp:
1.ổn định tổ chức:
2.Kiểm tra: Kết hợp trong giờ
3.Bài giảng:
34 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 921 | Lượt tải: 2
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Đại số 8 - Trường THCS Mỹ Hưng, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 5/03/2013
Chương IV. Bất phương trình bậc nhất một ẩn
tiết 57. Liên hệ giữa thứ tự và phép cộng
I.Mục tiêu:
-Học sinh biết nhận biết vế trái, vế phải, biết dùng dấu của bất đẳng thức, biết tính chất liên hệ giữa thứ tự với phép cộng ở dạng bất đẳng thức.
-Biết chứng minh bất đẳng thức nhờ so sánh giá trị các vế ở bất đẳng thức hoặc vận dụng tính chất liên hệ thứ tự và phép cộng (ở mức đơn giản)
II.Chuẩn bị:
-Hình vẽ minh hoạ thứ tự các số trên trục số
-Bảng phụ bài ?1; tính chất của bất đẳng thức
III.Tiến trình lên lớp:
1.ổn định tổ chức:
2.Kiểm tra: Kết hợp trong giờ
3.Bài giảng:
Hoạt động của GV
Hoạt động của HS
Nội dung ghi bảng
?Khi so sánh hai số a; b có thể xảy ra những trường hợp nào?
-GVghi bảng
-GV
treo hình vẽ minh hoạ thứ tự các số trên trục số
* Chốt: Điểm biểu diễn số nhỏ hơn nằm ở bên trái điểm biểu diễn số lớn hơn.
-Cho HSlên làm ?1 trên bảng phụ
-G V
giới thiệu cách nói gọn khi dùng các ký hiệu ≤; ≥
-GVgiới thiệu bất đẳng thức và các vế của bất đẳng thức
?Lấy ví dụ về bất đẳng thức?
-Xác định các vế của bất đẳng thức
-Biểu diễn 2 số -4 và 2 trên cùng một trục số.So sánh 2 số?
Ta có bất đẳng thức
-4 < 2
-Cùng cộng 3 vào 2 vế của bất đẳng thức. Biểu diễn 2 KQ trên trục số thứ hai?
Có nhận xét gì?
-Cho HS làm ?2
-Qua KQ bài trên: nêu thành tính chất
-G ghi bảng t/c a < b
Các t/c còn lại HS
tự ghi
+GV giới thiệu
‘’Bất đẳng thức cùng chiều ‘’
?Phát biểu t/c bằng lời ?
-GV treo bảng phụ
: nhấn mạnh ý ‘’được bất đẳng thức cùng chiều’’
-GV
dùng t/c để trình bày VD 2
-Cho HS
làm ?3
-Tương tự với ?4
?Đọc chú ý ?
-HS tră lời
HS
quan sát và nhắc lại về cách biểu diễn số thực trên trục số nằm ngang
-HS
lên bảng điền
HS
giải thích VD x2 = 0
hoặc x2 > 0
-HSghi bài
HS lấy ví dụ
-HS trả lời
HS biểu diễn
-4 + 3 < 2 + 3
HS trả lời
(có thể minh hoạ bằng hình vẽ)
HS
tự ghi các tính chất vào vở
-H S
phát biểu
-HS đọc lại
-GVlàm mẫu cho H S theo dõi
-HS
lên bảng trình bày
(Dựa vào trục số để so sánh và 3) Hoặc So sánh: 2 < 9 nên <3
-HS đọc
1.Nhắc lại về thứ tự trên tập hợp số:
Với a, b R thì xảy ra một trong ba trường hợp :
a = b (số a bằng số b)
a < b (số a nhỏ hơn số b)
a > b (số a lớn hơn số b)
?1. 1,53 -2,41
*a không nhỏ hơn b (a lớn hơn hoặc bằng b), ký hiệu :
VD: với mọi x
*
VD: mọi x
2.Bất đẳng thức:
Hệ thức dạng a b; a ≥ b; a ≤ b) gọi là bất đẳng thức
*VD: bất đẳng thức: 7 + (-3) > -5
7 + (-3) là vế trái
-5 là vế phải
3.Liên hệ giữa thứ tự và phép cộng:
-4 2
2+3
-4+3
-4+3
- 1 5
-4 + (-3) < 2 + (-3)
?2. a) -4 + (-3) < 2 + (-3)
b) Dự đoán: -4 + c < 2 + c
*Tính chất: Với a, b, c ta có:
Nếu a < b thì a + c < b + c
Nếu a b thì a + c b + c
Nếu a > b thì a + c > b + c
Nếu a b thì a + c b + c
Phát biểu: SGK( trang 36)
*VD2: Chứng tỏ:
2003 + (-35) < 2004 +(-35)
Giải: Vì 2003 < 2004
Nên 2003 + (-35) < 2004 +(-35)
?3. so sánh
-2004 + (-777) và -2005 + (-777)
mà không tính giá trị từng biểu thức
Giải: Vì -2004> -2005
Nên -2004 + (-777) > - 2005 + (-777)
?4.
*Chú ý: SGK
4.Củng cố:Cho hs làm bài tập1
a) S
b) Đ
c) Đ
d) Đ
** Bài tập củng cố t/c: Trong các cách suy sau cách nào đúng cách nào sai?
a <b a + c< b + c.
a ≥ b a + c ≤ b + c.
a ≤ b a + c < b + c
a > b a + c > b + c
Các tính chất của bất đẳng thức
5.HDVN: Bài 2; 3; 4/37( sgk)
.....................................................................................................................................
Ngày soạn: 5/03/2013
Tiết 58. Liên hệ giữa thứ tự và phép nhân
I.Mục tiêu:
-Nắm được tính chất liên hệ giữa thứ tự và phép nhân (với số dương, với số âm) ở dạng bất đẳng thức.
-Biết sử dụng tính chất để chứng minh bất đẳng thức bằng suy luận.
-Biết phối hợp vận dụng các tính chất thứ tự.
II.Chuẩn bị: Hình vẽ phần 2; bài 5/39; 2 bảng cho 2 đội chơi; bảng nhóm ?4
III.Tiến trình lên lớp:
1.ổn định tổ chức:
2.Kiểm tra: Tính chất liên hệ giữa thứ tự và pháp cộng
3.Bài giảng:
Hoạt động của GV
Hoạt động của HS
Nội dung ghi bảng
GV đặt vấn đề : -2c <3c có luôn xảy ra với số c bất kì hay không ?
GV vẽ trục số lên bảng
?Biểu diễn -2 và 3 trên cùng một trục số ?
Có bất đẳng thức nào?
? Cùng nhân vào 2 vế của bất đẳng thức với 2, biểu diễn KQ trên trục số thứ hai?
? So sánh 2 KQ?
-Cho HS làm ?1
? Vậy khi nhân cả hai vế của BĐT với cùng một số dương thì như thế nào?
*GV giới thiệu tính chất
-GV treo bảng phụ: phát biểu t/c bằng lời: GV nhấn mạnh “Nhân với cùng một số dương” và “bất đẳng thức cùng chiều”
-Cho HS làm ?2
-GV treo hình vẽ minh hoạ KQ nhân 2 vế của bất đẳng thức với số âm
-Cho HS làm ?3
?Đọc tính chất?
-GV tóm tắt ghi bảng
GV nhấn mạnh ‘’nhân với cùng một số âm ‘’ và bất đẳng thức ngược chiều ‘’
-GV giới thiệu :Hai bất đẳng thức ngược chiều ‘’
-Cho HS thảo luận ?4
-GV kiểm tra KQ và sửa chữa cách trình bày
(Có thể HS chia cả 2 vế cho -4)
?Dựa vào ?4, cho HS trả lời ?5
-GV giới thiệu t/c bắc cầu (t/c này thường dùng để c/m bất đẳng thức) dùng hình Vẽ minh hoạ.
-GV cho HS áp dụng t/c bắc cầu để c/m bất đẳng thức
*Chú ý: cách trình bày bài c/m bất đẳng thức phải dựa trên cơ sở của các phép biến đổi
?Nhắc lại t/c về liên hệ giữa thứ tự và phép nhân?
-Cho HS chơi trò chơi bài 5/39: Mỗi đội 4 H, thi tiếp sức
-HS lên bảng biểu diễn
Ta có bất đẳng thức
-2 < 3
-HS tính và biểu diễn
-2 . 2 < 3. 2
-HS trình bày
-HS đọc lại
-HS đọc lại
-HS lên bảng điền và giải thích
-HS trình bày
-HS đọc
HS làm ?3
Ghi t/c
-Các nhóm thảo luận
-HS trả lời: chú ý chia ra 2 trường hợp cụ thể
- HS nhắc lại
1.Liên hệ giữa thứ tự và phép nhân với số dương :
-2 3
-2.2 3.2
-4 6
-2.2 < 3.2
?1.a) -2 < 3
-2.5091 < 3.5091
b) Dự đoán : -2c 0)
*Tính chất: Với a, b, c mà c > 0, ta có:
Nếu a < b thì ac < bc
Nếu a b thì ac bc
Nếu a > b thì ac > bc
Nếu a b thì ac bc
?2.Đặt dấu thích hợp vào ô trống
a) >
b) <
2.Liên hệ giữa thứ tự và phép nhân với số âm:
?3.a) -2 3. (-345)
b)Dự đoán : -2. c > 3c (c < 0)
*Tính chất : Với a, b, c mà c < 0, ta có
Nếu a bc
Nếu a b thì ac bc
Nếu a > b thì ac < bc
Nếu a b thì ac bc
Phát biểu: ( SGK)
?4. Vì -4a > -4b
-4a.< -4b.
a < b
?5.Khi chia cả 2 vế của bất đẳng thức
cho một số âm (dương) ta được một bất đẳng thức mới ngược chiều (cùng chiều) với bất đẳng thức đã cho
3.Tính chất:
Với a, b, c
Nếu a < b và b < c thì a < c
*Ví dụ:
Cho a > b. Chứng minh a + 2 > b – 1
Giải:
+Vì a > b a + 2 > b + 2 (1)
+Vì 2 > -1 b + 2 > b – 1 (2)
Từ (1) và (2) a + 2 > b – 1
*Trò chơi: Bài 5/39
a) Đ
b) S
c) S
d) Đ
4.Củng cố: Nhắc lại các tính chất liên hệ giữa thứ tự và phép nhân (đặc biệt là nhân với số âm)
Nhắc lại t/c bắc cầu
5.HDVN: Bài 6, 7, 8, 9/40
Ngày soạn: 10/03/2013
Tiết 59. luyện tập
I.Mục tiêu:
-Cho học sinh luyện về liên hệ giữa thứ tự và phép cộng, phép nhân, tính chất bắc cầu để chứng minh các bất đẳng thức, so snáh các giá trị của biểu thức
-Rèn kỹ năng trình bày chặt chẽ, lô gíc
II.Chuẩn bị: Bảng phụ bài 9/40
III.Tiến trình lên lớp:
1.ổn định tổ chức:
2.Kiểm tra:Nêu các t/c của BĐT( Cho HS lên bảng viết các t/c)
3.Bài giảng:
Hoạt động của GV
Hoạt động của HS
Ghi bảng
-GV chép bài lên bảng
-Cho HS lên bảng trình bày
-GV: Nếu VT là một tích thì dùng t/c liên hệ giữa thứ tự với phép nhân, còn nếu là một tổng thì dùng t/c liên hệ giữa thứ tự với phép cộng
-GV treo bảng phụ cho HS lên làm bài 9
-G giải thích rõ
để HS hiểu tại sao lại điền đúng
-Cho HS lên bảng chữa bài
-Nhận xét và cho điểm
?Cách c/m bài 12?
-Gọi HS lên trình bày
?Bài toán cho biết gì ?
?Yêu cầu c/m gì?
?Cách làm?
-Tương tự với các phần còn lại
-Cho HS làm bài 14
?Các kiến thức đã áp dụng để c/m?
-GV chép bài tập lên bảng
-Cho HS thảo luận theo nhóm
-GV liểm tra KQ thảo luận
?Có KL gì qua bài tập ?
-HS lên bảng làm nêu rõ t/c áp dụng
-HS lên điền trên bảng phụ
-HS chữa bài
Nêu rõ các kiến thức đã áp dụng để c/m
-Phần b: dùng t/c bắc cầu
-So sánh -2 và -1 rồi áp dụng liên hệ giữa thứ tự và phép nhân, liên hệ giữa thứ tự và phép cộng để biến đổi
(HS có thể tình giá trị của từng vế rồi so sánh)
a + 5 < b + 5
-So sánh a và b
-Cùng cộng vào 2 vế với – 5
để có thể so sánh a và b
-HS lên bảng trình bày
-HS làm ra nháp
-Hai HS lên bảng trình bày
-HS trả lời
-HS các nhóm thảo luận
-HS phát biểu: Nếu cộng từng vế của 2 bất đẳng thức cùng chiều thì ta được một bất đẳng thức cùng chiều với bất đẳng thức đã cho
I.Chữa bài tập :
1.Bài 6/39: Cho a < b. So sánh
a) 2a và 2b
Vì a 0 nên 2a < 2b
b) 2a và a + b
Vì a < b a + a < a + b
2a < a + b
c) – a và - b
Vì a -b
Bài 7/40
Số a âm hay dương?nêú
a)12a <15a
Vì 12 0
b) 4a < 3a
Vì 4 >3 và 4a < 3a nên:a < 0
c) – 3a > - 5a
Vì -3 > -5 và -3a > -5a nên:a > 0
2.Bài 9/40:
a) (S)
b) (Đ)
c) (Đ)
d) (S)
3.Bài 8/40: Cho a < b. Chứng tỏ
a) 2a – 3 < 2b – 3
Giải:
Vì a < b 2a < 2b
2a – 3 < 2b – 3
b) 2a – 3 < 2b + 5
Giải:
Vì a < b 2a < 2b
2a – 3 < 2b – 3
Vì - 3 < 5 2b – 3 < 2b + 5
Vậy 2a – 3 < 2b + 5( T? bắc cầu)
II.Bài tập:
1.Bài 12/40: Chứng minh
a) 4(-2) + 14 < 4(-1) + 14
Vì - 2 < -1 4(-2) < 4(-1)
4(-2) + 14 < 4(-1) + 14
b) (-3).2 + 5 < (-3)(-5) + 5
Vì 2 > 5 (-3).2 < (-3)(-5)
(-3).2 +5 < (-3)(-5) +5
2.Bài 13/40: So sánh a, b nếu
a) a + 5 < b + 5
Giải: Vì a + 5 < b + 5
a + 5 – 5 < b + 5 – 5
a < b
c) 5a - 6 5b – 6
Giải: Vì 5a - 6 5b – 6
5a – 6 + 6 5b – 6 + 6
5a 5b
a b
3.Bài 14/40: Cho a < b. So sánh
a) 2a + 1 và 2b + 1
Giải: Vì a < b 2a < 2b
2a + 1 < 2b + 1
b) 2a + 1 và 2b + 3
Giải: Vì a < b 2a < 2b
2a + 1 < 2b + 1
Vì 1 < 3 2b + 1 < 2b + 3
Vậy 2a + 1 < 2b + 3
4.Bài tập: Cho a < b và c < d. Chứng minh a + c < b + d
Giải: Vì a < b a + c < b + c
Vì c < d b + c < b + d
Vậy a + c < b + d
4.củng cố: Rút kinh nghiệm cách trình bày các bài tập
5.HDVN: Bài 10, 11, 13b, d
----------------------------------
Ngày soạn:12/03/2013
Tiết 60. bất phương trình một ẩn
I.Mục tiêu:
-Học sinh nắm được khái niệm bất phương trình một ẩn, biết cách kiểm tra một số có là nghiệm của bất phương trình một ẩn hay không
-Biết viết và biểu diễn tập nghiệm của bất phương trình trên trục số
(Dạng x a; x a; x a)
II.Chuẩn bị: Vẽ hình bài 17/43
III.Tiến trình lên lớp:
1.ổn định tổ chức:
2.Kiểm tra:Kết hợp trong giờ
3.Bài giảng:
Hoạt động của GV
Hoạt động của HS
Nội dung ghi bảng
Giới thiêu phần mở đầu
?Đọc bài toán ?
Cho HS thảo luận theo bàn
-GV xem xét KQ và chấp nhận nhiều KQ khác nhau thỏa mãn yêu cầu
-GV giới thiệu: bất phương trình một ẩn, các vế của bất phương trình, nghiệm của bất phương trình
-Cho HS làm ?1
?Bất phương trình có bao nhiêu nghiệm?
-Để giải một bất phương trình ta đi tìm tập nghiệm của nó
?Thế nào là tập nghiệm của bất phương trình?
-GV làm mẫu VD1: diễn đạt bằng lời và viết dưới dạng tập nghiệm
GV hướng dẫn cách biểu diễn tập nghiệm trên trục số
-Cho HS trả lời ?2
-Cho HS làm ?3
-Tương tự với ?4
?Thế nào là hai bất phương trình tương đương?
?Lấy VD về hai bất phương trình tương đương?
?Đọc bài 15?
?Muốn biết x = 3 có là nghiệm của bất phương trình nào hay không ta làm như thế nào?
-Cho HS trả lời bài 16
-HS đọc
-HS thảo luận và đưa ra KQ
(Thay x = 9 vào bất phương trình nếu có khẳng định đúng thì x = 9 là nghiệm của bất phương trình)
-HS trả lời
-HS trả lời: có vô số nghiệm
-HS trả lời
-HS theo dõi GV làm và vẽ vào vở
-HS trả lời
-HS lên bảng trình bày
-HS trả lời
-HS đọc
-HS trả lời
-Viết tập nghiệm của bất phương trình
-Biểu diễn tập nghiệm trên trục số
-HS trình bày
1.Mở đầu :
Hệ thức 2 200x + 4 000 25 000
Là một bất phương trình một ẩn
2 200x + 4 000 là VT
25 000 là VP
x = 9 là một nghiệm của bất phương trình
?1.a)
là VT
6x – 5 là VP
b) x = 3 thì = 9
6x – 5 = 13
Mà 9 < 13 là khẳng định đúng nên x = 3 là nghiệm của bất phương trình
2.Tập nghiệm của bất phương trình:
*Tập hợp tất cả các nghiệm của một bất phương trình là tập nghiệm của bất phương trình
/////////////////O
*Ví dụ1: Tập nghiệm của bất phương trình x > 3 là ù
/////////////////O
////////////////////
3
?2.
*Ví dụ 2: Tập nghiệm của bất phương trình x 7
ùx 7
/////////////////
O
?3. x - 2
[
S = ùx
/////////////////
-2 0
?4. x < 4
)////////////////////
S = ùx < 4
O
4
3.Bất phương trình tương đương:
*Hai bất phương trình có cùng tập nghiệm gọi là hai bất phương trình tương đương
Ví dụ : 3 3
4.Luyện tập :
a.Bài 15/43 :
-Với x = 3 ta có 2.3 + 3 < 9 (Sai)
x = 3 không là nghiệm của bất phương trình (a)
-Với x = 3 ta có -4.3 > 2.3 + 5 (Sai)
x = 3 không là nghiệm của bất phương trình (b)
-Với x = 3 ta có 5 – 3 > 3.3 – 12 (Đ)
x = 3 là một nghiệm của bất phương trình (c)
b.Bài 16/43 :
a) x < 4
)/////////////
S = ùx < 4
0 4
b) x - 2
S = ù
]/////////////////////////
-2 0
4.Củng cố: Khái niệm bất phương trình một ẩn, tập nghiệm, cách biểu diễn tập nghiệm của bất phương trình trên trục số và kháI niệm bất phương trình tương đương
5.HDVN: Bài 16c, d; 17; 18
Ngày soạn: 13/03/2013
Tiết 61.Bất phương trình bậc nhất một ẩn (1)
I.Mục tiêu:
- Học sinh nắm được định nghĩa BPT bậc nhất một ẩn.Lấy được VD
- Học sinh nhận biết được bất phương trình bậc nhất một ẩn
-Biết áp dụng từng qui tắc biến đổi bất phương trình để giải bất phương trình
-Biết sử dụng qui tắc biến đổi bất phương trình để giải thích sự tương đương của bất phương trình
-Biết cách giảI và trình bày lời giải bất phương trình
II.Chuẩn bị: ôn lại định nghĩa phương trình bậc nhất một ẩn
Bảng phụ ?1; Bảng nhóm ?4, viết sẵn các VD 1, 2, , 3, 4
III.Tiến trình lên lớp:
1.ổn định tổ chức:
2.Kiểm tra:
- Hãy biểu diễn tập nghiệm của mỗi BPT sau trên trục số
a) x < b
b) x > 3
c) x≤ 2
Phát biểu định nghĩa phương trình bậc nhất một ẩn?
3.Bài giảng:
Hoạt động của GV
Hoạt động của HS
Nội dung ghi bảng
?Tương tự như Pt bậc nhất một ẩn ,hãy định nghĩa bất phương trình bậc nhất một ẩn ?
-GV tóm tắt ghi bảng
-GVnhấn mạnh :
+Dạng của bất phương trình
+Điều kiện của a
-GV treo ?1
? Muốn giải BPT x -5 < 18 ta làm như thế nào ?
-GV giới thiệu qyu tắc và cơ sở của qui tắc: liên hệ giữa thứ tự và phép cộng
?Đọc qui tắc ?
?Trình bày cách biến đổi
-GV ghi bảng
-G chép VD 2 lên bảng
?Yêu cầu của bài?
?Cách giải?
Chi lớp thành 2 nhóm làm ?2
-Cho 2HS lên làm ?2 đại diện cho 2 nhóm
?Nhận xét?
Chú ý: Khi giải BPT bậc nhất: Ta thường chuyển các hạng tử chứa ẩn về VT còn các hạng tử không chứa ẩn về VP
?Đọc qui tắc?
? Quy tắc này có gì khác so với quy tắc nhân với một số ở PT
?Cơ sở của qui tắc?
-GV hướng dẫn HS làm VD3 (Có thể chia cả 2 vế cho 0,5)
- Tương tự như PT ta có thể phát biểu qui tắc chia như thế nào ?
-GV chép VD4
?Nhân cả 2 vế với bao nhiêu ?
?Bất phương trình thay đổi như thế nào ?
-Cho HS lên bảng làm ?3
?Thế nào là 2 bất phương trình tương đương ?
?Cách chứng tỏ 2 bất phương trình tương đương ?
-Cho HS các nhóm thảo luận (có thể chỉ biến đổi bất phương trình mà không cần giải
-HS trả lời
-Nhắc lại định nghĩa
-HS trả lời
-HS đọc
-HS trả lời
-HS ghi bài vào vở
-HS trả lời
-Chuyển các hạng tử chứa ẩn sang một vế
-Một HS trình bày
-Hai HS lên bảng
-HS nhận xét và sửa chữa
-HS đọc qui tắc
-HS trả lời
-HS trả lời
-Đổi chiều
-Hai HS lên trình bày
-HS trả lời
-Tìm tập nghiệm rồi so sánh
-HS thảo luận theo nhóm
1.Định nghĩa :
Bất phương trình dạng
ax + b < 0
(ax + b > 0; ax + b 0;
ax + b 0)
Với a, b là 2 số đã cho; a 0 là bất phương trình bậc nhất một ẩn
?1.Các bất phương trình bậc nhất một ẩn
2x – 3 < 0
5x – 15 0
2.Hai qui tắc biến đổi bất phương trình
a.Qui tắc chuyển vế :
SGK/44
*VD1 : Giải bất phương trình
x – 5 < 18
Giải : x – 5 < 18
x < 18 + 5 x < 23
S = ùx < 23
*VD2 : Giải bất phương trình
3x > 2x + 5 và biểu diễn tập nghiệm trên trục số
Giải: 3x > 2x + 5
3x – 2x > 5
x > 5
////////////////////////////////(
S = ùx > 5
o
5
?2.Giải các bất phương trình
x + 12 > 21
x > 21 – 12
x > 9
S = ùx > 9
b) - 2x > - 3x – 5
- 2x + 3x > - 5
x > - 5
S = ùx > - 5
b.Qui tắc nhân với một số :
SGK/44
*VD3 : Giải bất phương trình
0,5x < 3
Giải: 0,5x < 3
2.0,5x < 2.3
x < 6
S = ùx < 6
*VD4 : Giải bất phương trình
Giải:
-4 .() < -4.3
x > -12
//////////////( |
S = {x /x >-12
-12 0
?3.Giải các bất phương trình
a) 2x < 24
x < 12
Vậy tập ngiệm của BPT là:
S = {x /x < 12}
b) – 3x < 27
x > - 9
Vậy BPT có tập ngiệm là: S ={x/ x > - 9}
?4.Giải thích sự tương đương
a) x + 3 < 7 x – 2 < 2
x < 4 x < 4
Hai BPT có cùng tập ngjiệm là:
S = { x / x < 4} nên 2 bất phương trình đã cho tương đư
b)2x 6
x >- 2 x < - 2
Hai BPT có cụng tập nghiệm là:
S = {x / x < - 2}
4.Củng cố: Nêu lại định nghĩa bất phương trình một ẩn
Hai qui tắc biến đổi tương đương bất phương trình
? Để giải thích sự tương đương của 2 BPT ta có mấy cách ?
5.HDVN : Bài 19, 20, 21, 22/47
.....................................................................................................................................
Ngày soan : 14/03/2013
Tiết 62. Bất phương trình bậc nhất một ẩn (2)
I.Mục tiêu:
-Tiếp tục vận dụng hai qui tắc chuyển vế để giảI bất phương trình bậc nhất một ẩn.
-Biết cách giảI một số bất phương trình qui về được bất phương trình bậc nhất nhờ hai phép biến đổi trên.
II.Chuẩn bị:
III.Tiến trình lên lớp:
1.ổn định tổ chức:
2.Kiểm tra:
- Nêu định nghĩa BTP bậc nhất một ẩn. Lấy VD
- Kiểm tra 2 quy tắc biến đổi
3. Bài giảng
Hoạt động của GV
Hoạt động của HS
Nội dung ghi bảng
Cho HS làm VD 5
- Chép đề lên bảng
- Hướng dẫn giải từng bước.
+ Chuyển vế – 3
+ Chia 2 vế cho 2.
+ Biểu diễn tập nghiệm.
Cho HS làm ?5
GV chép đề lên bảng
GV chép VD 6 lên bảng
GV chép VD 7 lên bảng
? Có phải BPT bậc nhất một ẩn không?
GV trình bày cách giải
Chia HS làm ?6 theo nhóm
Cho HS giải thêm một số BPT sau:
GV chốt: Nếu PT chưa có dạng ax + b < 0
(ax + b > 0; ax + b 0; ax + b 0)
thì ta có thể dùng các phép biến đổi đưa về dạng đó để giải.
? Những BPT nào có thể đưa được về dạng: ax + b < 0
(ax + b > 0; ax + b 0; ax + b 0)
- HS theo dõi và ghi vào vở
1 HS lên bảng làm ? 5
1 HS lên bảng làm VD6
Suy nghĩ biến đổi và trả lời
Các nhóm nhận xét bài của nhau
HS làm việc theo nhóm
Các nhóm nhận xét bài của nhau
Hs trả lời
3) Giải bất PT bậc nhất một ẩn
VD5: ( SGK)
?5
-4x – 8 < 0
-4x < 8
-4x :(-4) > 8 : ( -4)
x > - 2
Vậy PT có tập ngjhiệm là:
////////////(
S = {x / x > - 2}
0
VD6 (SGK)
4) Giải BPT đưa được về dạng ax + b < 0
(ax + b > 0; ax + b 0; ax + b 0)
VD7: SGK
?6
- 0,2x- 0,2 > 0,4x – 2
- 0,2x – 0,4x > - 2 + 0,2
- 0,6x > - 1,8
x < 3
Vậy BPT có tập nghiệm là:
S = {x/ x<3}
5) luyện tập.
1) Giải các BPT sau:
a)
Vậy BPT có tập nghiệm là: S ={x / x < 0}
2) Giẩi các BPT sau:
a) 2x – 1 > 5
2x > 6
x > 3
b) 3 – x > 2
x < 4
Vậy BPT có tập nghiệm là: S = {x / x < 4}
4. Củng cố:
- Nhắc lại cách giải BPT bậc nhất một ẩn
- Đọc lại hai quy tắc.
5. Hướng dẫn về nhà: - Làm các bài tập:22, 23, 24, 25 ( SGK trang 47)
Ngày soạn: 24/03/2013
Tiết 63. Luyện tập
I.Mục tiêu:
-Rèn kỹ năng giảI bất phương trình bậc nhất một ẩn, các bất phương trình đưa được về dạng ax + b < 0, kỹ năng giải bài toán bằng cách lập bất phương trình.
-Cách biểu diễn tập nghiệm trên trục số và dựa vào tập nghiệm để tìm bất phương trình.
- Biết thiết lập BPT để tìm điều kiện cho giá trj của biểu thức dương hay âm.
II.Chuẩn bị:
GVsoạn GA lựa chọn bài tập cho phù hợp trình độ HS
III.Tiến trình lên lớp:
1.ổn định tổ chức:
2.Kiểm tra: Phát biểu hai quy tắc biến đổi BPT
3.Bài giảng:
Hoạt động của GV
Hoạt động của HS
Nội dung ghi bảng
Hoạt độngI
-GV chép bài lên bảng
-Cho HS lên bảng làm
?Nhận xét?
Tương tự gọi HS lên chữa bài 25
-GV yêu cầu HS nhắc lại các bước giải
?Đọc bài 29?
?Yêu cầu của bài?
?Cách tìm x?
Hoạt độngII
Cho HS trả lời miệng bài 28
-GV chép bài lên bảng
?Cách giải?
-Cho HS lên trình bày
-GV chép bài lên bảng
?Bất phương trình có dạng gì?
?Cách giải?
-Cho HS lên bảng trình bày
?Đọc bài 30?
GV giới thiệu: loại giảI bài toán bằng cách lập bất phương trình
-Cho HS thảo luận để tìm ra bất phương trình
-GV kiểm tra KQ
-Cho HS lên làm tiếp
-HS lên bảng chữa bài
-HS nhận xét
-HS lên chữa bài
-HS đọc
-HS trả lời
-Đặt cho 2x – 5 0 rồi giải bất phương trình
Bài 28 :
a)Thay x = 2 vào BPT ta được một khẳng định đúng.
b) x = 0 không phải là nghiệm của BPT đã cho
-HS trả lời
-Hệ số hữu tỷ
-Qui đồng mẫu hai vế rồi khử mẫu
-HS lên bảng trình bày
-HS đọc
-HS thảo luận theo nhóm
-HS lên bảng trình bày và kết luận
I.Chữa bài tập:
1.Bài 24: Giảibất phương trình
b) 3x – 2 < 4
3x < 4 + 2
3x < 6
x < 2
Vậy BPT có tập nghiệm là: S ={ x/ x < 2}
c) 2 – 5x≤ 17
- 5x ≤ 17 – 2
-5x ≤ 15
x ≥ 3
Vậy BPT có tập nghiệm là:
S = {x /x ≥ 3}
2.Bài 25: Giải bất phương trình
b) d)
x
x - 24
x < 9
II.Luyện tập:
1.Bài 29: Tìm x sao cho
a) Giá trị của biểu thức 2x – 5 không âm
Giải: 2x – 5 0
2x 5
x
Vậy với mọi x thì giá trị của biểu thức 2x – 5 không âm
2.Bài 32: Giải bất phương trình
a) 8x + 3(x + 1) > 5x – (2x – 6)
8x + 3x + 3 > 5x – 2x + 6
11x – 3x > 6 – 3
8x > 3
x >
b.2x( 6x – 1) > ( 3x – 2)( 4x + 3)
12x2 – 2x > 12x2 + 9x – 8x – 6
-11x > - 6
x < 6/11
Vâ7ỵ BPT có tập ngjhiệm là: s ={x / x <6/11}
3.Bài 31: Giải bất phương trình, biểu diễn tập nghiệm ttrên trục số
c)
3x – 3 < 2x – 8
x < - 5
Vậy BPT có tập nghiệm là:
(////////////////////////
s = {x / x< - 5}
0
-5
4.Bài 30:
Gọi x là số tờ giấy bạc loại 5000 đ
(x ; x < 15)
Số tờ giấy bạc loại 2000đ là 15 – x
Số tiền loại 5000đ là 5000x
Số tiền loại 2000đ là 2000(15 – x)
Ta có phương trình:
5000x + 2000(15 - x) 70 000
5x + 2(15 – x) 70
5x + 30 – 2x 70
3x 40
x
Vậy số tờ giấy bạc loại 5000đ là số nguyên từ 1 đến 13 tờ
4,Củng cố: Rút kinh nghiệm các bài tập đã chữa
5.HDVN: bài 28; 29b; 31b, d; 32b; 33; 34
-------------------------------------------------------------------------------------------------
Ngày soạn. 26/03/2013
Tiết 64. phương trình chứa dấu giá trị tuyệt đối
I.Mục tiêu:
-Biết bỏ dấu giá trị tuyệt đối dưới dạng ùaxù và ùx + aù
-Biết giải một số phương trình dạng ùaxù = cx + d và ùx + aù = cx + d
II.Chuẩn bị:
-HS: ôn định nghĩa về giá trị tuyệt đối
-Bảng nhóm ?2
III.Tiến trình lên lớp:
1.ổn định tổ chức:
2.Kiểm tra:
3.Bài giảng:
Hoạt động của GV
Hoạt động của HS
Nội dung ghi bảng
Hoạt độngI
? Muốn rút gọn một biểu thức chứa dấu giá trị tuyệt đối ta làm như thế nào?
-GV giới thiệu VD1
?Khi x 3 thì biểu thức ùx + 3ù nhận giá trị như thế nào?
?Biểu thức A được rút gọn như thế nào?
-GV trình bày mẫu trên bảng
-GV chép câu b
Cho HS lên bảng trình bày
Cho HS lên làm ?1
?Nhận xét ?
Hoạt độngII
-GV : để giải pt chứa dấu GTTĐ ta phải bỏ được dấu GTTĐ trong pt
GV giới thiệu VD 2 theo từng bước như bài toán mẫu
+ĐK bỏ dấu GTTĐ
+GiảI các pt trong từng trường hợp
+Kiểm tra nghiệm theo ĐK
+Trả lời
-GV chép VD 3 lên bảng
?Tìm ĐK để bỏ dấu GTTĐ?
-Cho HS lên bảng trình bày
-Cho HS thảo luận theo nhóm ?2
-GV kiểm tra KQ của các nhóm và sửa chữa
Cho HS giải thêm một số PT sau:
1)
-HS trả lời
-HS trả lời
-HS lên bảng trình bày
-HS lên bảng trình bày
-HS nhận xét và sửa chữa
-HS theo dõi từng bước giải của GV
-HS làm ra nháp và trả lời
-HS lên bảng trình bày
-Các nhóm thảo luận
1.Nhắc lại về giá trị tuyệt đối:
ùaù= a nếu a 0
ùaù= - a nếu a < 0
*VD1: Bỏ dấu GTTĐ và rút gọn biểu thức
a) A = ùx - 3ù + x – 2 khi x 3
Giải:
Khi x 3 x – 3 0
ùx - 3ù = x – 3
A = x – 3 + x – 2
= 2x – 5
b) B = 4x + 5 + ù-2xù khi x > 0
Giải:
Khi x > 0 - 2x < 0
ù-2xù = 2x
B = 4x + 5 + 2x
= 6x + 5
?1.Rút gọn các biểu thức
a) C = ù-3xù + 7x – 4 khi x 0
Giải: Khi x 0 - 3x 0
ù-3xù = - 3x
C = - 3x + 7x – 4
= 4x – 4
b) D = 5 – 4x + ùx - 6ù khi x < 6
Giải: khi x < 6 x – 6 < 0
ùx - 6ù = 6 – x
D = 5 – 4x + 6 – x
= 11 – 5x
2.Giải một số phương trình chứa dấu GTTĐ:
*VD2: Giải pt: ù3xù = x + 4 (1)
+Khi 3x 0 x 0
ù3xù = 3x
(1) 3x = x + 4
2x = 4
x = 2 (t/m ĐK x 0 )
+Khi 3x < 0 x < 0
ù3xù = - 3x
(1) - 3x = x + 4
4x = - 4
x = - 1 (t/m ĐK x < 0)
Vậy pt(1) có 2 nghiệm: x = 2; x = -1
*VD3 : Giải pt ùx - 3ù= 9 – 2x (2)
+Khi x – 3 0 x 3
ùx - 3ù = x – 3
(2) x – 3 = 9 – 2x
3x = 12
x = 4 (t/m ĐK x 3)
+Khi x – 3 < 0 x < 3
ùx - 3ù = 3 – x
(2) 3 – x = 9 – 2x
x = 6 (không t/m ĐK x < 3)
Vậy pt có 1 nghiệm x = 4
?2.Giải pt
A,ùx + 5ù = 3x + 1 (3)
B,
Giải:
+Khi x + 5 0 x - 5
ùx + 5ù = x + 5
(3) x + 5 = 3x + 1
2x = 4
x = 2 (t/m ĐK
File đính kèm:
- dai so 8 hk2.doc