Giáo án Đại số 9 - Hồ Văn Thơ

I. MỤC TIÊU: Qua bài này học sinh cần:

- Nhận biết các cặp tam giác vuông đồng dạng

 trong hình 1 SGK .

- Biết thiết lập các hệ thức b2 = ab', c2 = ac',

 h2 = b'c', dưới sự dẫn dắt của giáo viên .

- Biết vận dụng các hệ thức trên để giải bài tập .

II. CHUẨN BỊ:

GV chuẩn bị bảng phụ có vẽăn hình 1 SGK

III. CÁC HOẠT ĐỘNG TRÊN LỚP :

Hoạt động 1: Kiểm tra nề nếp tổ chức lớp và sự chuẩn bị học tập của học sinh.

Hoạt động 2: Giới thiệu sơ lược chương trình Toán Hình học 9 và các yêu cầu về cách học bài trên lớp, cách chuẩn bị bài ở nhà, các dụng cụ tối thiểu cần có.

 

doc120 trang | Chia sẻ: luyenbuitvga | Lượt xem: 919 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Đại số 9 - Hồ Văn Thơ, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
chương i: hệ thức lượng trong tam giác vuông Tiết:1 Ngày soạn: 18 . 8 . 2009 Đ 1 . một số hệ thức về cạnh và đường cao trong tam giác vuông I. Mục tiêu: Qua bài này học sinh cần: Nhận biết các cặp tam giác vuông đồng dạng trong hình 1 SGK . Biết thiết lập các hệ thức b2 = ab', c2 = ac', h2 = b'c', dưới sự dẫn dắt của giáo viên . Biết vận dụng các hệ thức trên để giải bài tập . II. Chuẩn bị: GV chuẩn bị bảng phụ có vẽăn hình 1 SGK III. các hoạt động trên lớp : Hoạt động 1: Kiểm tra nề nếp tổ chức lớp và sự chuẩn bị học tập của học sinh. Hoạt động 2: Giới thiệu sơ lược chương trình Toán Hình học 9 và các yêu cầu về cách học bài trên lớp, cách chuẩn bị bài ở nhà, các dụng cụ tối thiểu cần có. Hoạt động của GV và HS Ghi nhớ Hoạt động 3: Hệ thức giữa cạnh góc vuông va hình chiếu của nó trên cạnh huyền S S S GV yêu cầu HS tìm các cặp tam giác vuông có trong hình 1 ? ( 3 cặp: DABC DHBA, DBAC DAHC, DHAC DHBA S S Từ DBAC DAHC ta suy ra được hệ thức nào về các cạnh? Có thể suy đoán được hệ thức tương tự nào nữa từ DBAC DAHC. HS phát biểu định lý 1 SGK và vẽ hình 1, ghi GT,KL của định lý 1. GV hướng dẫn học sinh chứng minh định lý 1 bằng phương pháp phân tích đi lên . HS trình bày phần chứng minh. GV yêu cầu học sinh phát biểu định lý Pitago và thử áp dụng định lý 1 để chứng minh định lý Pitago (chú ý gợi mở a = b' + c') Định lý 1: SGK GT DABC ,Â=900, AH^BC KL AB2 = BH . BC AC2 = CH . BC Ví dụ 1: Một cách khác để chứng minh định lý Pitago Hoạt động 4: Một số hệ thức liên quan đến đường cao GV yêu cầu HS phát biểu định lý 2, sử dụng hình 1 để ghi GT, KL GV yêu cầu HS làm bài tập ?2 và dùng phương pháp phân tích đi lên để thấy được chứng minh DHAC DHBA là hợp lý. HS trình bày chứng minh định lý 2. GV đặt vấn đề như đã nêu ở phần ô chữ nhật tròn đầu bài và hướng giải quyết => Ví dụ 2 Ngoài cách giải như SGK , ta có cách làm nào khác hơn dựa trên các hệ thức đã học. (Tìm AD rồi dùng định lý 1) Định lý 2 : SGK GT DABC ,Â=900, AH^BC KL AH2 = BH . CH Ví du 2: SGK Hoạt động 5: Củng cố tiết 1 - HS làm bài tập 1,2 trên giấy. - GV kiểm tra cách làm của một vài HS. Hoạt động 6: Dặn dò GV khuyến khích HS tìm các cách tính khác nhau cho bài tập 1 và 2 - Chuẩn bị cho tiết sau: Học và ứng dụng các định lý 3 và 4 IV. Rút kinh nghiệm: ........................................ ........................................ Tiết: 2 Ngày soạn: 20 . 8 . 2009 Đ 1 . một số hệ thức về cạnh và đường cao trong tam giác vuông (TT) I. Mục tiêu: Qua bài này học sinh cần: Nhận biết các cặp tam giác vuông đồng dạng trong hình 1 SGK. Biết thiết lập các hệ thức ah = bc, dưới sự dẫn dắt của giáo viên. Biết vận dụng các hệ thức trên để giải bài tập. II. Chuẩn bị: GV chuẩn bị bảng phụ có vẽ sẵn hình 1 SGK và các hình trong câu hỏi kiểm tra bài cũ HS:Học thuộc, làm bài tập về nhà III. các hoạt động trên lớp: Hoạt động 1: Kiểm tra nề nếp tổ chức lớp và sự chuẩn bị học tập của học sinh. Hoạt động 2: Kiểm tra bài cũ Câu hỏi: Phát biểu các hệ thức liên hệ giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. Hãy tính x và y trong các hình sau: Hoạt động của GV và HS Ghi nhớ Hoạt động 3: Định lý 3 Hãy nêu công thức tính diện tích D vuông ABC bằng hai cách. Suy ra hệ thức gì từ hai cách tính diện tích này. HS phát biểu định lý 3 và sử dụng hình 1 SGK để ghi GT, KL S GV hướng dẫn học sinh chứng minh định lý 3 bằng cách phân tích đi lên và giải bài tập ?2 ( chứng minh DABC DHBA) GV đặt vấn đề : mdựa vào hệ thức ở định lý 3 và định lý Pitago ta có thể suy ra hệ thức nào liên hệ giữa đường cao và hai cạnh góc vuông ? Định lý 3: SGK GT DABC ,Â=900, AH^BC KL AH.BC = AB.AC Hoạt động 4: Định lý 4 GV hướng dẫn học sinh suy ra từ hệ thức ah = bc để có a2h2 = b2c2 rồi kết hợp với a2 = b2 + c2 để có (b2 + c2 )h2 = b2c2 và chia hai vế cho h2b2c2 để được hệ thức HS phát biểu định lý 4 và ghi gT, KL theo hình 1 Cho bài toán như ví dụ 3. HS giải. Định lý 4 : SGK GT DABC ,Â=900, AH^BC KL Ví dụ 3 : SGK Hoạt động 5: Củng cố toàn bài Với hình 1, hãy viết tất cả các hệ thức liên hệ giữa các cạnh , giữa cạnh góc vuông với hình chiếu, các hệ thức có liên quan đến đường cao. HS hình thành bảng tóm tắt để ghi nhớ. HS giải các bài tập 3 và 4 bằng phiếu. GV kiểm tra. Hoạt động 6 :Dặn dò Lập bảng tóm tắt tất cả các hệ thức đã biết trong tam giác vuông về quan hệ độ dài . GV hướng dẫn giải bài tâp 5, 6, 7, 8 và 9 SGK Chuẩn bị tiết sau: Luyện giải các bài tập trên. IV. Rút kinh nghiệm: ........................................ ....................................... Tiết 3: Ngày soạn: 24. 8 . 2009 luyện tập I. Mục tiêu: Qua bài này học sinh cần: Rèn kỹ năng vận dụng các hệ thức b2 = ab', c2 = ac', h2 = b'c', ah = bc, và định lý Pitago trong tam giác vuông để giải các bài tập và ứng dụng thực tế. Rèn kỹ năng linh hoạt trong việc sử dụng các hệ thức. II. Chuẩn bị: GV chuẩn bị bảng phụ có vẽ sẵn các hình trong câu hỏi kiểm tra bài cũ III. các hoạt động trên lớp : Hoạt động 1: Kiểm tra nề nếp tổ chức lớp và sự chuẩn bị học tập của học sinh. Hoạt động 2: Kiểm tra bài cũ Câu hỏi: Vẽ hình và lập bảng tóm tắt tất cả các hệ thức đã biết trong tam giác vuông về quan hệ độ dài. Tìm x, y trong các hình sau: 8 Hoạt động của GV và HS Ghi nhớ Hoạt động 3: Giải bài tập số 5 SGK HS vẽ hình và cho biết các đại lượng đề đã cho và cần tính các đại lượng nào? Muốn tính AH ta có các cách tính nào? (dùng đlý 4 hoặc thông qua việc tính BC và áp dụng đlý 3). Ta tính được BH và CH bằng cách nào? (áp dụng đlý 1 sau khi đã tính được BC) Ta sử dụng cách tính nào cho tối ưu khi trình bày lời giải bài toán ? (tính BC và rồi tính AH, BH, CH) Bài toán cho thấy rằng khi biết hai cạch góc vuông ta có thể tính được các độ dài khác Ta có BC = 5 (theo Pitago) Và AH.BC = AB.AC Suy ra AH =2,4 Mặt khác AB2=BH.BC và AC2=CH.BC nên BH = 1,8 và CH = 3.2 Hoạt động 4: Giải bài tập số 6SGK HS có thể lợi dụng hình trên để giải và cho biết các đại lượng đề đã cho và cần tính các đại lượng nào? Tương tự các câu hỏi ở hoạt động 3, GV đặt tình huống để HS tìm được cách giải tối ưu. Qua bài tập này, ta càng khẳng định rằng chỉ cần biết hai yếu tố độ dài của tam giác vuông ta có thể tính toán được các yếu tố độ dài còn lại. Thử kiểm tra lại nhận xét này khi giải bài tập số 8. Có BC = BH + CH = 3 Mặt khác AB2=BH.BC và AC2=CH.BC Nên AB = và CH = ( HS tự giải bài tập số 8, chú ý trong hình 11 có các tam giác vuông cân) Hoạt động 5: Giải bài tập số 7 SGK ở hai cách trong SGK, để chứng minh cách vẽ trên là đúng ta phải chứng minh điều gì? (có một tam giác vuông) Hãy căn cứ vào gợi ý của SGK để giải quyết vấn đề này. Học sinh tự trình bày lời giải Hoạt động 6: Giải bài tập số 9 SGK HS vẽ hình và cho biết GT, KL (không cần ghi) GV hướng dẫn học sinh dùng phương pháp phân tích đi lên để chứng minh tam giác DIL cân . Bảng phân tích: DDIL cân DI = DL DADI = DCDL éA =éC = 900 AD = CD éADI =éCDL (ABCD là hình vuông) (cùng phụ với éCDI) - GV hướng dẫn HS phát hiện được tam giác DKL vuông tại D và có đường cao DC để thấy được việc chứng minh hệ thức không đổi (= ) là dễ dàng khi đã biết thêm DI = DL và CD không đổi. a) Chứng minh DDIL cân Xét DADI và DCDL ta có éA =éC = 900, AD = CD (ABCD là hvuông) , éADI=éCDL (cùng phụ với éCDI) nên DADI = DCDL (g-c-g) Suy ra DI = DL Hay DDIL cân tại D b) Chmh khg đổi DDKL có éD=900, DC^KL nên mà DI = DL và DC không đổi nên không đổi. Hoạt động7: Dặn dò HS hoàn thiện các bài tập đã giải trên lớp và bài tập số 8 SGK , Làm thêm các bài tập số 18, 19 SBT tập I trang 92 Chuẩn bị bài mới : Tỉ số lượng giác của góc nhọn . Ôn lại cách viết các hệ thức giữa các cạnh của hai tam giác đồng dạng . Tiết 4 Ngày soạn: 25 . 8 . 2009 Đ2 . tỉ số lượng giác của góc nhọn I. Mục tiêu: Qua bài này học sinh cần: Nắm vững các định nghĩa các tỉ số lượng giác của một góc nhọn. Hiểu được các định nghĩa là hợp lý. (Các tỉ số này phụ thuộc vào độ lớn của góc nhọn à chứ không phụ thuộc vào từng tam giác vuông có một góc bằng à. Biết viết các tỉ số lượng giác của một góc nhọn, tính được tỉ số lượng giác của một số góc nhọn đặc biệt như 300, 450, 600 II. Chuẩn bị: GV chuẩn bị bảng phụ có vẽ sẵn tam giác vuông có góc a và các cạnh đối, kề, huyền và các tỉ số lương giác của góc a đó. III. các hoạt động trên lớp: Hoạt động 1: Kiểm tra nề nếp tổ chức lớp và sự chuẩn bị học tập của học sinh. Hoạt động 2: Kiểm tra bài cũ Hai tam giác vuông ABC và A'B'C' có các góc nhọn B và B' bằng nhau. Hỏi hai tam giác vuông đó có đồng dạng nhau không? Nếu có, hãy viết các hệ thức tỉ lệ giữa các cạnh của chúng. Hoạt động của GV và HS Ghi nhớ Hoạt động 3: Mở đầu về các khái niệm tỉ số lượng giác của một góc nhọn GV hướng dẫn cho HS viết các hệ thức trong bài kiểm tra để mỗi vế là một tỉ số giữa hai cạnh của cùng một tam giác. GV giới thiệu các cạnh của góc nhọn B (cạnh kề, cạnh đối). HS làm bài tập ?1 (GV hướng dẫn) . Có nhận xét gì về tỉ số giữa các cạnh của một góc nhọn trong tam giác vuông với độ lớn của góc nhọn đó. (Gợi ý: hai góc bằng nhau thì các tỉ số đó ra sao? Các góc thay đổi thì tỉ số đó thay đổi không?) GV giới thiệu khái niệm mở đầu của các tỉ số lượng giác. 1 - Mở đầu: *Tỉ số giữa các cạnh của một góc nhọn trong tam giác vuông thay đổi khi độ lớn của góc nhọn đó thay đổi. Hoạt động 4 :Định nghĩa các tỉ số lượng giác của một góc nhọn: Tỉ số lượng giác của một góc nhọn được định nghĩa như thế nào? HS đọc định nghĩa trong SGK, vẽ hình và ghi rõ bằng công thức. HS so sánhcác tỉ số lượng giác của một góc nhọn với 0 và so sánh sina, cosa với 1. HS làm bài tập ?2 và thử tính các tỉ số lượng giác này khi b = 450; b = 600 để trình bày các ví dụ 1 và 2. 2 - Định nghĩa : SGK a Nhận xét: SGK Ví dụ: Các tỉ số lượng giác của các góc 450 , 600 Hoạt động 5: Củng cố GV nhắc lại định nghĩa các tỉ số lượng giác cho HS bằng cách nhớ đặc biệt: sin bằng đối/huyền, cosin bằng kề/huyền , tg bằng đối/kề, cotg bằng kề/đối HS làm bài tập số 10 SGK Hoạt động 6:Dặn dò Học thuộc lòng định nghĩa các tỉ số lượng giác của một góc nhọn. Làm bài tập 14 SGK và 21 SBT Tiết sau: học tiếp các ví dụ 3,4 và phần Tỉ số lượng giác của hai góc phụ nhau IV. Rút kinh nghiệm: ........................................ Tiết 5: Ngày soạn: 28. 9 . 2009 Đ2 . tỉ số lượng giác của góc nhọn (TT) I. Mục tiêu: Qua bài này học sinh cần: Biết dựng một góc nhọn khi cho một trong các tỉ số lượng giác của nó. Nắm vững được các hệ thức liên hệ giữa các tỉ số lượng giác của hai góc phụ nhau Biết vận dụng các tỉ số lượng giác để giải các bài tập liên quan. II. Chuẩn bị: GV chuẩn bị bảng phụ có ghi sẵn tỉ số lượng giác của các góc nhọn đặc biệt. III. các hoạt động trên lớp: Hoạt động 1: Kiểm tra nề nếp tổ chức lớp và sự chuẩn bị học tập của học sinh. Hoạt động 2: Kiểm tra bài cũ Câu hỏi 1: Phát biểu định nghĩa các tỉ số lượng giác của một góc nhọn. Vẽ một tam giác vuông có góc nhọn bằng 400 rồi viết các tỉ số lượng giác của góc 400.(Bài tập 21 SBT) Câu hỏi 2: Phát biểu định nghĩa các tỉ số lượng giác của một góc nhọn? Cho tam giác ABC vuông tại A . Chứng minh rằng : (Bài tập 22 SBT) Hoạt động của GV và HS Ghi nhớ Hoạt động 3: Dựng một góc nhọn khi biết một trong các tỉ số lượng giác của góc đó GV đặt vấn đề: trong tiết trước ta đã biết tính tỉ số lượng giác của một góc nhọn cho trước. Nay ta có thể dựng được một góc nhọn khi biết một trong các tỉ số lượng giác của nó không? GV hướng dẫn học sinh làm ví dụ 3 (gợi ý: khi biết tga tức là biết tỉ số của hai cạnh nào của tam giác vuông và thấy được thứ tự các bước dựng). Tương tự HS làm ví dụ 4 và bài tập ?3 GV nêu chú ý cho học sinh. Ví dụ 3: SGK Chú ý: Nếu sina = sinb (hoặc cosa=cosb hoặc tga = tgb hoặc cotga = cotgb) thì a = b Hoạt động 4: Tỉ số lượng giác của hai góc phụ nhau HS làm bài tập ?4 (bằng cách từng nhóm độc lập tìm tỉ số lượng giác của góc B, góc C rồi cả lớp thử tìm các cặp tỉ số bằng nhau. Lúc đó GV cho học sinh thấy được mối quan hệ giữâhi góc B và C là phụ nhau) HS phát biểu định lý . Từ kết quả ở ví dụ 2, hãy tính các tỉ số lượng giác của góc 300. GV củng cố và tổng hợp thành bảng như một bài tập điền khuyết. GV hướng dẫn cách nhớ bảng tóm tắt đó cho học sinh(chủ yếu ở hai tỉ số lượng giac sina và cosa) HS làm ví dụ 7 và GV nêu thêm chú ý về cách viết. Định lý : SGK Bảng TSLG của một số góc a TSLG 300 450 600 sina cosa tga 1 cotga 1 Hoạt động 5: Củng cố toàn tiết HS làm bài tập số 11 và 12 SGK theo nhóm (nhóm chẵn làm bài tập 11, nhóm lẻ làm bài tập 11 và đối chiếu kiểm tra nhau ). GV kiểm tra qua đại diện nhóm . Qua hai tiết học trên ta cần nắm vững những tỉ số lượng giác nào? Hoạt động 6: Dặn dò Học thuộc lòng các định nghĩa các tỉ số lượng giác của một góc nhọn , nắm vững cách tính các tỉ số lượng giác của một góc nhọn cho trước, cách dựng một góc nhọn khi biết một trong các tỉ số lượng giác của nó, mối quan hệ giữa các tỉ số lượng giác của hai góc nhọn phụ nhau. Làm các bài tập 13, 14, 15, 16 và 17 Tiết sau : Luyện tập. IV. Rút kinh nghiệm: ........................................ Tiết 6: Ngày soạn: 8 . 9 . 2009 luyện tập I. Mục tiêu: Qua bài này học sinh cần: Rèn kỹ năng tính toán các tỉ số lượng giác của một góc nhọn Rèn kỹ năng dựng góc nhọn khi biết một trong các tỉ số lượng giác của nó. Vận dụng các tỉ số lượng giác của một góc nhọn để giải bài tập có liên quan. II. Chuẩn bị: GV: Chuẩn bị bảng phụ có ghi sẵn tỉ số lượng giác của các góc nhọn đặc biệt. HS: Học thuộc các tỉ số lượng giác của các góc nhọn; Làm các bài tập trong SGK. III. các hoạt động trên lớp: Hoạt động 1: Kiểm tra nề nếp tổ chức lớp và sự chuẩn bị học tập của học sinh. Hoạt động 2: Kiểm tra bài cũ ? Cho tam giác ABC vuông tại A, AB = 6cm. Biết . Hãy tính: a) Cạnh AC b) Cạnh BC c) Các tỉ số lượng giác của góc C (bằng hai cách) Hoạt động của GV và HS Ghi nhớ Hoạt động 3: Dựng góc nhọn khi biết một tỉ số lượng giác của nó. Bài tập 13: Khi biết một tỉ số lượng giác của một góc nhọn tức là biết được mối quan hệ nào ? Ta thường tạo nên một tam giác vuông để làm gì ? GV hướng dẫn học sinh phân tích một trong các bài a,b,c,d còn các bài còn lại tương tự HS tự giải. Bài tập 13b: Dựng: Dựng éxOy = 900 Lấy M ẻOx sao cho OM = 3 Vẽ (M,5) cắt Oy tại N. Góc OMN là góc cần dựng. Chứng minh : HS tự làm Hoạt động 4: Chứng minh một hệ thức liên quan đến các tỉ số lượng giác của một góc nhọn Bài tập 14 : GV hướng dẫn HS vẽ hình một tam giác vuông có một góc nhọn bằng a rồi thiết lập các tỉ số lượng giác của góc nhọn đó. GV hướng dẫn HS dùng các tỉ số đó để chmh các hệ thức. GV chú ý cho HS có thể dùng các hệ thức này để giải các bài tập có liên quan a Bài tập 14 : Hoạt động 5: Tính toán bằng cách sử dụng các tỉ số lượng giác của một góc nhọn Bài tập 15: Mối quan hệ giữa hai góc B và C trong tam giác vuông ABC (Â = 900). Biết cosB ta có thể suy ra ngay được tỉ số lượng giác nào của góc C? Ta cần phải tính các tỉ số lượng giác nào nữa của góc C và dựa vào hệ thức nào để tính. Bài tập 16: HS nhắc lại các tỉ số lượng giác của góc 600 Dựa vào tỉ số lượng giác nào để tính độ dài cạnh đối diện với góc 600 khi biết cạnh huyền. Bài tập 17: GV hướng dẫn HS phân tích đi lên để tìm cách giải bằng cách như: Để tính độ dài x, ta cần tìm độ dài trung gian nào và áp dụng kiến thức nào? để tìm độ dài trung gian đó ta cần áp dụng tính chất nào? Học sinh trình bày lời giải. Bài tập 15: Vì éB + éC = 900 nên sinC = cosB = 0,8. Vì sin2C + cos2C = 1 và cosC > 0 nên Bài tập 16 : Có Nên Bài tập 17 : Có DABH vuông cân tại H (vì éA=450 và éH = 900) nên AH = BH =20 Có AC2 = AH2 + HC2 = 202 + 212 = 841 (vì DACH vuông tại H) Nên AC = 29 Hoạt động 6:Dặn dò Học sinh hoàn chỉnh tất cả các bài tập đã hướng dẫn sửa chữa. Lập bảng tóm tắt các tỉ số lượng giác của các góc đặc biệt và các công thức ở bài tập 14 Chuẩn bị bài sau: Bảng lượng giác và máy tính điện tử có các phím tỉ số lượng giác IV. Rút kinh nghiệm: Tiết 7: Ngày soạn: 12 . 9 . 2009 Đ 3 . bảng lượng giác I. Mục tiêu: Qua bài này học sinh cần: Hiểu được cấu tạo của bảng lượng giác dựa trên quan hệ giữa các tỉ số lượng giác của hai góc phụ nhau. Thấy được tính đồng biến của sin và tang, tính nghịch biến của cosin và cotg. Bước đầu có kỹ năng tra bảng để biết được các tỉ số lượng giác của một góc nhọn cho trước và tìm được số đo của một góc nhọn khi biết một tỉ số lượng giác của góc đó. II. Chuẩn bị: GV chuẩn bị bảng phụ có trích ghi một số phần của bảng sin - cosin, bảng tg - cotg và máy tính điện tử bỏ túi CASIO 500A, 500MS, 570MS III. các hoạt động trên lớp: Hoạt động 1: Kiểm tra nề nếp tổ chức lớp và sự chuẩn bị học tập của học sinh. Hoạt động 2: Kiểm tra bài cũ ? Nêu mối quan hệ giữa các tỉ số lượng giác của hai góc phụ nhau. Xét mối quan hệ giữa hai góc trong mỗi biểu thức sau rồi tính: b)tg760 - cotg140 c) sin2270 + sin2630 Hoạt động của GV và HS Ghi nhớ Hoạt động 3: Giới thiệu cấu tạo và công dụng của bảng lượng giác GV giới thiệu nguyên lý cấu tạo của bảng lượng giác và các bảng lượng giác cụ thể. GV giới thiệu cấu tạo của bảng VIII ,IX, X. HS quan sát bảng lượng giác và nhận xét về tính đồng biến, nghịch biến của các tỉ số lượng giác của một góc nhọn khi độ lớn tăng dần từ 00 đến 900. Phần hiệu chính được sử dụng như thế nào ? Nhận xét: Khi góc a tăng từ từ 00 đến 900 thì sina và tga tăng còn cosa và cotga lại giảm. Hoạt động 4: Tìm tỉ số lượng giác của một góc nhọn cho trước GV đặt vấn đề: Làm thế nào để tìm tỉ số lượng giác của một góc nhọn cho trước? GV nêu cách tìm như SGK và phân thành hai trường hợp số phút là bội hay không là bội của 6 cùng với một vài ví dụ minh hoạ. Khi nào ta cộng hay trừ phần hiệu chính của bảng lượng giác? HS nêu cách tìm bằng miệng và đối chiếu với bảng. HS làm bài tập ?1 và ?2 Cách tìm :(SGK) Chú ý:(SGK) Ví dụ: Hoạt động 5: Sử dụng máy tính điện tử để tìm tỉ số lượng giác của một góc nhọn cho trước GV giới thiệu một số phím bấm trên máy tính điện tử CASIO dùng để tính tỉ số lượng giác của một góc nhọn cho trước. GV nêu cách sử dụng (đối với từng hệ máy A thì nhập số đo góc trước khi ấn các phím TSLG, còn hệ MS nhập ngược lại ) Khi tính cotg, ta phải tính như thế nào ? (tính tg rồi nghịch đảo) HS dùng máy tính để thực hiện các ví dụ ở hoạt động 5. Hoạt động 6: Thực hành củng cố tiết 7 - HS làm bài tập 18 (nêu cách làm và kiểm tra kết quả bằng máy tính điện tử) làm theo nhóm và chéo nhau. Hoạt động 10: Dặn dò HS đọc thêm bài Tìm tỉ số lượng giác và góc bằng máy tính điện tử bỏ túi CASIO. Làm các bài tập 20 đến 25 ( có kiểm tra kết quả bằng bảng lượng giác, bằng MTĐT và trình bày bằng suy luận) Tiết sau: Luyện tập IV. Rút kinh nghiệm: ........................................ Tiết 8: Ngày soạn: 15 . 9 . 2009 Đ 3 . bảng lượng giác(TT) I. Mục tiêu: Qua bài này học sinh cần: Hiểu được cấu tạo của bảng lượng giác dựa trên quan hệ giữa các tỉ số lượng giác của hai góc phụ nhau. Thấy được tính đồng biến của sin và tang, tính nghịch biến của cosin và cotg. Bước đầu có kỹ năng tra bảng để biết được các tỉ số lượng giác của một góc nhọn cho trước và tìm được số đo của một góc nhọn khi biết một tỉ số lượng giác của góc đó. II. Chuẩn bị: GV chuẩn bị bảng phụ có trích ghi một số phần của bảng sin - cosin, bảng tg - cotg và máy tính điện tử bỏ túi CASIO 500A, 500MS, 570MS III. các hoạt động trên lớp: Hoạt động của GV và HS Ghi nhớ Hoaùt ủoọng 1 : Kieồm tra - Phaựt bieồu ủũnh nghúa caực tổ soỏ lửụùng giaực cuỷa goực nhoùn ? - Neõu tớnh chaỏt veà tổ soỏ lửụùng giaực cuỷa hai goực phuù nhau ? - Cho hai goực phuù nhau a vaứ b. Neõu caựch veừ moọt tam giaực vuoõng ABC coự = a , = b . Neõu caực heọ thửực giửừa caực tổ soỏ lửụùng giaực cuỷa a vaứ b. - HS leõn baỷng traỷ lụứi vaứ ghi coõng thửực - HS leõn baỷng dửùng tam giaực vuoõng ABC vaứ ghi caực heọ thửực . Hoaùt ủoọng 2 : Tỡm soỏ ủo cuỷa goực nhoùn khi bieỏt moọt tổ soỏ lửụùng giaực cuỷa goực ủoự - GV hửụựng daón HS thửùc hieọn nhử SGK Vớ duù 5 : Tỡm goực nhoùn a (laứm troứn ủeỏn phuựt), bieỏt sina = 0,7837 Ta coự : sin51036’ ằ 0,7837 Suy ra : a ằ 51036’ - GV cho HS thửùc hieọn ?3 SGK - GV giụựi thieọu chuự yự SGK - HS theo doừi ?3/ Ta coự : cotg18024’ ằ 3,006 Suy ra : a ằ 18024’ SIN A 36’ . . . 510 . . . 7837 ỉChuự yự : Khi bieỏt tổ soỏ lửụùng giaực cuỷa moọt goực nhoùn, noựi chung, ta tỡm ủửụùc goực nhoùn sai khaực khoõng ủeỏn 6’. Tuy nhieõn, thoõng thửụứng trong tớnh toaựn ta laứm troứn ủeỏn ủoọ. - Vớ duù 6 : Tỡm goực nhoùn a (laứm troứn ủeỏn ủoọ), bieỏt sina = 0,4470 Ta coự 0,4462 < 0,4470 < 4478 hay sin26030’ < sina < sin26036’ Neõn 26030’ < a < 26036’ suy ra a ằ 270 - GV cho HS laứm baứi taọp ?4 SGK - HS theo doừi A 30’ 36’ 260 4462 4478 ?4/ Ta coự : 0,5534 < 0,5547 < 0,5548 hay cos56024’< cosa< cos56018’ suy ra a ằ 560 Hoạt động 3: Sử dụng máy tính điện tử để tìm số đo của một góc nhọn khi biết một tỉ số lượng giác của góc đó GV giới thiệu một số phím bấm trên máy tính điện tử CASIO dùng để tìm số đo của một góc nhọn khi biết một tỉ số lượng giác của góc đó. GV nêu cách sử dụng Khi biết cotg, ta phải thực hiện như thế nào? (Nghịch đảo cotg để được tg và tính số đo khi biết tg của góc đó ) HS dùng máy tính để thực hiện các ví dụ ở hoạt động 7. Hoạt động 4 : Thực hành củng cố tiết 8 - HS làm bài tập 19 (nêu cách làm và kiểm tra kết quả bằng máy tính điện tử) làm theo nhóm và chéo nhau. Hoạt động 5: Dặn dò HS đọc thêm bài Tìm tỉ số lượng giác và góc bằng máy tính điện tử bỏ túi CASIO. Làm các bài tập 20 đến 25 ( có kiểm tra kết quả bằng bảng lượng giác, bằng MTĐT và trình bày bằng suy luận) Tiết sau: Luyện tập IV. Rút kinh nghiệm: ........................................ Tiết 9: Ngày soạn: 22 . 9 . 2009 luyện tập I. Mục tiêu: Qua bài này học sinh cần: Củng cố thêm quan hệ giữa các tỉ số lượng giác của hai góc phụ nhau và tính đồng biến của sin và tang, tính nghịch biến của cosin và cotang. Rèn kỹ năng tra bảng để biết được các tỉ số lượng giác của một góc nhọn cho trước và tìm được số đo của một góc nhọn khi biết một tỉ số lượng giác của góc đó. III. các hoạt động trên lớp: Hoạt động 1: Kiểm tra nề nếp tổ chức lớp và sự chuẩn bị học tập của học sinh. Hoạt động 2: Kiểm tra bài cũ ? Nêu nguyên lý lập bảng lượng giác và cách sử dụng phần hiệu chính. Dùng bảng lượng giác để tìm : sin39013' ; cos52018' ; tg13020' ; cotg10017' Dùng bảng lượng giác để tìm góc nhọn x biết: Sin x = 0,5446 ; cos x = 0,4444; tg x = 1,1111 ; cotgx = 1,7142 (Gọi 4 em, mỗi em một cặp yêu cầu) Hoạt động của GV và HS Ghi nhớ Hoạt động 3 : Tìm tỉ số lượng giác của một góc nhọn cho trước Bài tập 20: - GV gọi học sinh tra bảng và trả lời kết quả sau khi nêu cách tra Bài tập 20: sin70013' = 0,9410 ; cosin25032' = 0,9023 tg43010' = 0,9380 ; cotg32015' = 1,5849 Hoạt động 4 :Tìm số đo của một góc nhọn khi biết một tỉ số lượng giác của góc đó Bài tập 21: - GV gọi học sinh tra bảng và trả lời kết quả sau khi nêu cách tra. Bài tập 21: sinx = 0,3495 => x ằ200 cosinx = 0,5427 => x ằ570 tgx = 1,5142 => x ằ570 cotgx = 3,163 => x ằ180 Hoạt động 3: Vận dụng các tính chất của các tỉ số lượng giác Bài tập 22 HS nhắc lại tính biến thiên của của các tỉ số lượng giác của một góc nhọn khi độ lớn tăng dần từ 00 đến 900. Sử dụng tính chất này để giải bài tập 22 Bài tập 23: - Xét mối quan hệ giữa hai góc trong mỗi biểu thức sau rồi tính để giải bài tập 23 Bài tập 24: -Ta cần phải so sánh trên cùng một loại tỉ số lượng giác thông qua các góc và tính biến thiên của tỉ số lượng giác này. Bài tập 25 :(dành cho HS khá, giỏi) Chú ý ta dùng các tính chất sina < 1, cosa < 1 và các hệ thức , các tỉ số lượng giác của các góc đặc biệt để so sánh. Bài tập 22: sin200 < sin700 vì 200 < 700 cosin250 > cosin63015' vì 250 < 63015' tg73020' > tg450 vì 73020' > 450 cotg20 > cotg37040' vì 20 < 37040' Bài tập 23: a) (vì 250 + 650 = 900) tg580 - cotg320 = tg580 - tg580 = 0 (vì 580 + 320 = 900 ) Bài tập 24: Vì cos140 = sin760 ; cos870 = sin30 và 780 > 760 > 470 > 30 nên sin780 > sin760 > sin470 > sin30 hay sin780 > cos140 > sin470 > cos870 Vì cotg250 = tg650 ; cotg380 = tg520 và 730 > 650 > 620 >520 nên tg730 > tg650 > tg620 > tg520 hay tg730 > cotg250 > tg620 > cotg380 Bài tập 25: Có Tương tự a ta được cotg320 > cos320. tg450 > cos450 vì cotg600 > sin300 vì Hoạt động 5:Dặn dò Học sinh hoàn chỉnh tất cả các bài tập đã hướng dẫn sửa chữa. Làm các bài tập 39,40 SBT tập I Chuẩn bị bài sau: Một số hệ thức về cạnh và góc trong tam giác vuông. IV. Rút kinh nghiệm: ........................................ Tiết 10: Ngày soạn: 23 . 9 . 2009 luyện tập I. Mục tiêu: Qua bài này học sinh cần: Củng cố thêm quan hệ giữa các tỉ số lượng giác của hai góc phụ nhau và tính đồng biến của sin và tang, tính nghịch biến của cosin và cotang. Rèn kỹ năng sử dụng máy tính bỏ túi để biết được các

File đính kèm:

  • docGA H9cn ko gop tiet.doc
Giáo án liên quan