Giáo án giải tích 12 - Cơ bản

A -Mục tiêu:

1.Kiến thức

- Nắm vững định nghĩa sự đồng biến, nghịch biến của Hàm số.

- Nắm nội dung của định lý La - grăng và hệ quả cùng ý nghĩa hình học của định lý.

2.Kỹ năng:

- Nắm vững định nghĩa sự đồng biến, nghịch biến của Hàm số.

- Nắm được nội dung của định lý La - grăng và hệ quả , ý nghĩa hình học của định lý.

- Áp dụng được định lý La - grăng để chứng minh được hệ quả của định lý.

3. Tư duy, thái độ: Tư duy lô gíc , hệ thống, tích cực chủ động

B - Chuẩn bị của thầy và trò: Sách giáo khoa

doc34 trang | Chia sẻ: luyenbuitvga | Lượt xem: 1659 | Lượt tải: 2download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án giải tích 12 - Cơ bản, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
_____ Chương1 : ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số Tiết 1: Sự đồng biến và nghịch biến của hàm số Ngày soạn10/08/2008 A -Mục tiêu: 1.Kiến thức - Nắm vững định nghĩa sự đồng biến, nghịch biến của Hàm số. - Nắm nội dung của định lý La - grăng và hệ quả cùng ý nghĩa hình học của định lý. 2.Kỹ năng: - Nắm vững định nghĩa sự đồng biến, nghịch biến của Hàm số. - Nắm được nội dung của định lý La - grăng và hệ quả , ý nghĩa hình học của định lý. - áp dụng được định lý La - grăng để chứng minh được hệ quả của định lý. 3. Tư duy, thái độ: Tư duy lô gíc , hệ thống, tích cực chủ động B - Chuẩn bị của thầy và trò: Sách giáo khoa và bảng minh hoạ đồ thị. C - Tiến trình tổ chức ổn định lớp: - Sỹ số lớp:………Ngày dạy…………….. Bài mới: I - Tính đơn điệu của hàm số 1 - Nhắc lại định nghĩa: Hoạt động 1: - Nêu lại định nghĩa về sự đơn điệu của hàm số trên một khoảng K (K Í R) ? - Từ đồ thị ( Hình 1) trang 4 (SGK) hãy chỉ rõ các khoảng đơn điệu của hàm số y = sinx trên . Trong khoảng hàm số tăng, giảm như thế nào ? Hoạt động của học sinh Hoạt động của giáo viên - Nêu lại định nghĩa về sự đơn điệu của hàm số trên một khoảng K (K Í R). - Nói được: Hàm y = sinx đơn điệu tăng trên từng khoảng ; , đơn điệu giảm trên . Trên hàm số đơn điệu giảm, trên hàm số đơn điệu tăng nên trên hàm số y = sinx không đơn điệu. - Nghiên cứu phần định nghĩa về tính đơn điệu của SGK (trang 4). - Uốn nắn cách biểu đạt cho học sinh. - Chú ý cho học sinh phần nhận xét: + Hàm f(x) đồng biến trên K Û tỉ số biến thiên: + Hàm f(x) nghịch biến trên K Û tỉ số biến thiên: Hoạt động 2: (Củng cố) Tìm các khoảng đơn điệu của hàm số y = f(x) = 2x2 - 4x + 7 trên tập R ? Hoạt động của học sinh Hoạt động của giáo viên - Trình bày kết quả trên bảng. - Thảo luận về kết quả tìm được. - Phân nhóm ( thành 4 nhóm) và giao nhiệm vụ cho các nhóm: Nhóm 1, 3, dùng đồ thị. Nhóm 2, 4 dùng định nghĩa. - Gọi đại diện của hai nhóm 1, 2 lên trình bày kết quả. Hoạt động của học sinh Hoạt động của giáo viên - Nhận xét được bằng cảm tính: Có tiếp tuyến với đồ thị mà song song với AB. - Tính được hệ số góc của các tiếp tuyến đó là: att = - Gọi một học sinh lên bảng nhận xét và tính att. - Thuyết trình, dẫn dắt đến định lí La grăng. - Nêu ý nghĩa hình học của định lí. Hoạt động 4: (Dẫn dắt củng cố) Chứng minh hệ quả: Nếu F’(x) = 0 thì F(x) có giá trị không đổi trên khoảng đó. Hoạt động của học sinh Hoạt động của giáo viên - Hoạt động theo nhóm được phân công. - Nghiên cứu sách giáo khoa phần chứng minh hệ quả của định lí La - grăng. - Trình bày kết quả thu được. - Phân nhóm, giao nhiệm vụ cho học sinh nghiên cứu, tìm tòi cách chứng minh hệ quả. - Định hướng: Dùng định lí La - grăng chứng minh F(x) = F(x0) Bài tập về nhà: Dùng định nghĩa tìm các khoảng đơn điệu của các hàm số nêu trong bài tập 1 trang 11 (sgk) Rỳt kinh nghiệm …………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… Tiết 2-3: Sự đồng biến và nghịch biến của hàm số Ngày soạn 10/08/2008 A -Mục tiêu: Kiến thức - Nắm được mối liên hệ của khái niệm này với đạo hàm. - Hình thành kĩ năng giải toán về xét tính đơn điệu của hàm số bằng đạo hàm. Kỹ năng: - Mối liên hệ của tính đơn điệu và dấu của đạo hàm.(Cả định lí mở rộng) - Các ví dụ 1, 2, 3. - Lập bảng biến thiên của Hàm số. Quy tắc xét tính đơn điệu của hàm số bằng đạo hàm. Tư duy, thái độ: Tư duy lô gíc , hệ thống, tích cực chủ động C - Chuẩn bị của thầy và trò: - Sách giáo khoa và bảng minh hoạ đồ thị. - Máy tính điện tử Casio fx - 570 MS. D - Tiến trình tổ chức bài học: ổn định lớp: - Sỹ số lớp: ………… Ngày dạy…………….. Kiểm tra bài cũ : Xét tính đơn điệu của hàm số y = 2x2 Bài mới: II - Tính đơn điệu và dấu của đạo hàm. Hoạt động 1: Cho hàm số y = f(x) = x2. Hãy xét dấu của đạo hàm f’(x) và điền vào bảng sau x - Ơ 0 +Ơ y’ 0 y +Ơ +Ơ 0 Nêu nhận xét về quan hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm. Hoạt động của học sinh Hoạt động của giáo viên - Xét dấu của y’ = f’(x) = 2x và ghi vào bảng. - Nhận xét về quan hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm. - Thực hiện hoạt động 4 của Sgk (trang 6). - Gọi một học sinh lên thực hiện bài tập và nêu nhận xét về quan hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm. - Hướng dẫn học sinh thực hiện hoạt động 4 của Sgk (trang 6). 1 - Điều kiện để hàm số đơn điệu. Hoạt động 2: (Dẫn dắt khái niệm) Phát biểu và chứng minh định lí: + f’(x) > 0 "x ẻ (a, b) ị f(x) đồng biến trên (a, b). + f’(x) < 0 "x ẻ (a, b) ị f(x) nghịch biến trên (a, b). Hoạt động của học sinh Hoạt động của giáo viên - Hoạt động theo nhóm. - Trả lời được các câu hỏi: + Tại sao hàm số thoả mãn các điều kiện của định lí La - grăng ? + Để chứng minh hàm số đồng biến ( nghịch biến) ta phải chứng minh điều gì ? Tại sao ? - Phân nhóm và giao nhiệm vụ cho các nhóm: Nghiên cứu phần chứng minh định lí của SGK (trang 7). - Kiểm tra sự đọc hiểu của học sinh. - Uốn nắn sự biểu đạt của học sinh. Hoạt động 2: (Củng cố) Tìm các khoảng đơn điệu của các hàm số sau: a) y = 3x2 + 1 b) y = cosx trên . Hoạt động của học sinh Hoạt động của giáo viên a) Hàm số xác định trên tập R. y’ = 6x. y’ = 0 khi x = 0 và ta có bảng: x - Ơ 0 +Ơ y’ - 0 + y +Ơ +Ơ 1 Kết luận được: Hàm số nghịch biến trên (- Ơ; 0) và đồng biến trên (0; +Ơ). b) Hàm số xác định trên tập y’ = - sinx, y’ = 0 khi x = 0; x = và ta có bảng: x 0 y’ + 0 - 0 + y 1 1 0 -1 Kết luận được: Hàm số đồng biến trên từng khoảng , và nghịch biến trên . - Gọi học sinh thực hiện bài tập theo định hướng: + Tìm tập xác định của hàm số. + Tính đạo hàm và xét dấu của đạo hàm. Lập bảng xét dấu của đạo hàm + Nêu kết luận về các khoảng đơn điệu của hàm số. - Chú ý cho học sinh: + f’(x) > 0 và f’(x) = 0 tại một số điểm hữu hạn x ẻ (a, b) ị f(x) đồng biến trên (a, b). + f’(x) < 0 x ẻ (a, b) ị f(x) nghịch biến trên (a, b). - Uốn nắn sự biểu đạt của học sinh. Hoạt động 3: (Củng cố) Tìm các khoảng đồng biến, nghịch biến của hàm số: y = 2x3 + 6x2 + 6x - 7 Hoạt động của học sinh Hoạt động của giáo viên - Học sinh thực hiện độc lập, cá nhân. - Thể hiện được tính chính xác về: Tính toán, cách biểu đạt. - Gọi học sinh thực hiện bài tập theo định hướng đã nêu ở hoạt động 2. - Uốn nắn sự biểu đạt của học sinh. Hoạt động 4: (Củng cố) Tìm các khoảng đơn điệu của hàm số: y = 3x + + 5 Hoạt động của học sinh Hoạt động của giáo viên a) Hàm số xác định với "x ạ 0. b) Ta có y’ = 3 - = , y’ = 0 Û x = ± 1 và y’ không xác định khi x = 0. c) Ta có bảng xét dấu của đạo hàm và các khoảng đơn điệu của hàm số đã cho: x - Ơ -1 0 1 + Ơ y’ + 0 - - 0 + y -1 11 d) Kết luận được: Hàm số đồng biến trên từng khoảng (- Ơ; -1); (1; + Ơ). Hàm số nghịch biến trên từng khoảng (- 1; 0); (0; 1). - Gọi học sinh thực hiện bài tập theo định hướng đã nêu ở hoạt động 2. - Chú ý những điểm làm cho hàm số không xác định. Những sai sót thường gặp khi lập bảng. - Uốn nắn sự biểu đạt của học sinh. - Phát vấn: Nêu các bước xét tính đơn điệu của hàm số bằng đạo hàm ? 2 - Quy tắc xét tính đơn điệu của hàm số bằng đạo hàm. Hoạt động 5: (Củng cố) - Đọc phần quy tắc xét tính đơn điệu của hàm số bằng đạo hàm SGK (trang 8) - Chứng minh bất đẳng thức x > sinx với x ẻ . Hoạt động của học sinh Hoạt động của giáo viên - Đọc và phát biểu phần quy tắc xét tính đơn điệu của hàm số bằng đạo hàm SGK (trang 8). - Tìm khoảng đơn điệu của hàm số f(x) = x - sinx trên khoảng - Từ kết quả thu được kết luận về bất đẳng thức đã cho. - Tổ chức cho học sinh đọc và kiểm tra sự đọc hiểu của học sinh. - Hướng dẫn học sinh lập bảng khảo sát tính đơn điệu của hàm số: f(x) = x - sinx trên khoảng và đọc kết quả từ bảng để đưa ra kết luận về bất đẳng thức đã cho. - Hình thành phương pháp chứng minh bất đẳng thức bằng xét tính đơn điệu của hàm số. Bài tập về nhà: các bài tập 2, 3, 4, 5 trang 11 (SGK) RÚT KINH NGHIỆM ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… Tiết 3: Sự đồng biến và nghịch biến của hàm số Ngày soạn 20/08/2008 A - Mục tiêu: Kiến thức - Giải toán về xét tính đơn điệu của hàm số bằng đạo hàm. - áp dụng được đạo hàm để giải các bài toán đơn giản. Kỹ năng: - Có kỹ năng thành thạo giải toán về xét tính đơn điệu của hàm số bằng đạo hàm. - áp dụng được đạo hàm để giải các bài toán đơn giản. Tư duy, thái độ: Tư duy lô gíc , hệ thống, tích cực chủ động - Luyện kĩ năng giải toán về xét tính đơn điệu của hàm số bằng đạo hàm. - Chứng minh Bất đẳng thức đơn giản bằng đạo hàm. - Chữa các bài tập cho ở tiết 2. D- Chuẩn bị của thầy và trò: - Sách giáo khoa và bài tập đã được chuẩn bị ở nhà. - Máy tính điện tử Casio fx - 570 MS. E - Tiến trình tổ chức bài học: ổn định lớp: Sỹ số lớp: ………….Ngày dạy………………. Kiểm tra bài cũ : Xét tính đơn điệu của hàm số y = x3-2x2 Bài mới: Hoạt động 1: (Kiểm tra bài cũ) Chữa bài tập 2 trang 11: Tìm các khoảng đơn điệu của các hàm số: a) y = b) y = c) y = d) y = e) y = g) y = x + sinx Hoạt động của học sinh Hoạt động của giáo viên - Trình bày bài giải. - Nhận xét bài giải của bạn. - Gọi học sinh lên bảng trình bày bài giải đã chuẩn bị ở nhà. - Gọi một số học sinh nhận xét bài giải của bạn theo định hướng 4 bước đã biết ở tiết 2. - Uốn nắn sự biểu đạt của học sinh về tính toán, cách trình bày bài giải... Hoạt động 2: (Kiểm tra bài cũ) Chữa bài tập 5 trang 11 Chứng minh các bất đẳng thức sau: a) cosx > 1 - (x > 0) b) tgx > x + ( 0 < x < ) c) sinx + tgx > 2x ( 0 < x < ) Hoạt động của học sinh Hoạt động của giáo viên a) Hàm số f(x) = cosx - 1 + xác định (0 ;+ Ơ) và có đạo hàm f’(x) = x - sinx > 0 "x ẻ (0 ;+ Ơ) nên f(x) đồng biến trên (x ;+ Ơ). Ngoài ra f(0) = 0 nên f(x) > f(0) = 0 "xẻ(0;+ Ơ) suy ra cosx > 1 - (x > 0). b) Hàm số g(x) = tgx - x + xác định với các giá trị x ẻ và có: g’(x) = = (tgx - x)(tgx + x) Do x ẻ ị tgx > x, tgx + x > 0 nên suy ra được g’(x) > 0 " x ẻ ị g(x) đồng biến trên . Lại có g(0) = 0 ị g(x) > g(0) = 0 " x ẻ ị tgx > x + ( 0 < x < ). c) h(x) = sinx + tgx - 2x xác định với các giá trị x ẻ và có: h’(x) = cosx + - 2 > 0 " x ẻ ị suy ra đpcm. - Hướng dẫn học sinh thực hiện phần a) theo định hướng giải: + Thiết lập hàm số đặc trưng cho bất đẳng thức cần chứng minh. + Khảo sát về tính đơn điệu của hàm số đã lập ( nên lập bảng). + Từ kết quả thu được đưa ra kết luận về bất đẳng thức cần chứng minh. - Gọi học sinh lên bảng thực hiện theo hướng dẫn mẫu. - Giới thiệu thêm bài toán chứng minh bất đẳng thức bằng tính đơn điệu của hàm có tính phức tạp hơn cho các học sinh khá: Chứng minh các bất đẳng thức sau: a) x - với các giá trị x > 0. b) sinx > với x ẻ c) 2sinx + 2tgx > 2x+1 với x ẻ d) 1 < cos2x < với x ẻ . Bài tập về nhà: 1) Hoàn thiện các bài tập còn lại ở trang 11 (SGK) 2) Làm thêm bài tập trong SBT RÚT KINH NGHIỆM ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… Tiết 4: Cực trị của Hàm số Ngày soạn 20/08/2008 A - Mục tiêu: - Nắm vững khái niệm cực đại, cực tiểu địa phương. Phân biệt được với khái niệm giá trị lớn nhất nhỏ nhất. - Nắm vững các điều kiện đủ để hàm số có cực trị. B - Nội dung và mức độ: - Khái niệm cực đại, cực tiểu. - Điều kiện đủ để hàm số có cực trị: Định lý 1 và quy tắc 1. - Ví dụ 1 C - Chuẩn bị của thầy và trò: - Sách giáo khoa và các biểu bảng. - Máy tính điện tử Casio fx - 570 MS. D - Tiến trình tổ chức bài học: ổn định lớp: - Sỹ số lớp: ………………. Ngày dạy………………. Kiểm tra bài cũ : Nêu định nghĩa tính đồng biến nghịch biến của hàm số? Bài mới: Hoạt động 1: ( kiểm tra bài cũ) Chữa bài tập 3 trang 11: Chứng minh rằng hàm số y = nghịch biến trên từng khoảng (- Ơ; 1) và (1; + Ơ). Hoạt động của học sinh Hoạt động của giáo viên Hàm số xác định trên R và có y’ = . Ta có y’ = 0 Û x = ± 1 và xác định "x ẻ R. Ta có bảng: x -Ơ -1 1 + Ơ y’ - 0 + 0 - y - Kết luận được: Hàm số nghịch biến trên từng khoảng (- Ơ; 1) và (1; + Ơ). - Gọi một học sinh lên bảng trình bày bài tập đã chuẩn bị ở nhà. - Cho tính thêm các giá trị của hàm số tại các điểm x = ± 1. - Dùng bảng minh hoạ đồ thị của hàm số và nêu câu hỏi: Hãy chỉ ra điểm cao nhất, điểm thấp nhất của đồ thị so với các điểm xung quanh ? - Dẫn dắt đến khái niệm điểm cực trị của đồ thị hàm số. Đồ thị của hàm số y = I - Khái niệm cực đại, cực tiểu Hoạt động 2: Đọc và nghiên cứu định nghĩa cực đại, cực tiểu của hàm số. (SGK - trang 12) Hoạt động của học sinh Hoạt động của giáo viên - Đọc và nghiên cứu định nghĩa cực đại, cực tiểu của hàm số. (SGK - trang 12) - Phát biểu ý kiến, biểu đạt nhận thức của bản thân. - Tổ chức cho học sinh đọc. nghiên cứu định nghĩa về cực đại, cực tiểu của hàm số. - Thuyết trình phần chú ý của SGK. II - Điều kiện đủ để hàm số có cực trị Hoạt động 3:(Dẫn dắt khái niệm) Lấy lại ví dụ trong hoạt động 1, với yêu cầu: Hàm số y = có cực trị hay không ? Tại sao ? Hoạt động của học sinh Hoạt động của giáo viên Chỉ ra được hàm số đạt cực tiểu tại x = - 1, giá trị cực tiểu y = - . Hàm số đạt cực đại tại x = 1, giá trị cực đại y = . - Từ bảng, nhận xét được sự liên hệ giữa đạo hàm và các điểm cực trị của hàm số. - Gọi học sinh chỉ ra các điểm cực đại, cực tiểu của đồ thị hàm số: y = - Phát biểu nhận xét về sự liên hệ giữa đạo hàm và các điểm cực trị của hàm số. Phát biểu định lí 1. Hoạt động 4:(Dẫn dắt khái niệm) Hãy điền vào các bảng sau: x x0 - h x0 x0 + h y’ y CĐ x x0 - h x0 x0 + h y’ - + y CT Hoạt động 5: Chứng minh định lí 1 Hoạt động của học sinh Hoạt động của giáo viên - Hoạt động theo nhóm: Đọc, thảo luận phần chứng minh định lí 1 (SGK) - Phát biểu quan điểm của bản thân về cách chứng minh định lí, nhận xét về cách biểu đạt, trình bày của bạn. - Nêu được quy tắc tìm các điểm cực trị. - Tổ chức cho học sinh hoạt động theo nhóm với nhiệm vụ: Đọc, thảo luận phần chứng minh định lí 1 (SGK) - Kiểm tra sự đọc hiểu của học sinh: Gọi đại diện của nhóm chứng minh định lí - Phát biểu quy tắc tìm các điểm cực trị của hàm số ( Quy tắc 1) - Uốn nắn cách biểu đạt của học sinh. Hoạt động 6: (Củng cố) Tìm các điểm cực trị của hàm số: y = f(x) = x(x2 - 3) Hoạt động của học sinh Hoạt động của giáo viên - Giải bài tập theo hướng dẫn của giáo viên. - Tham khảo SGK. - Hướng dẫn học sinh tìm cực trị của hàm số đã cho theo từng bước mà quy tắc 1 đã phát biểu. - Gọi học sinh thực hiện. - Uốn nắn cách biểu đạt của học sinh. Hoạt động 7: (Củng cố) Tìm cực trị ( nếu có) của hàm số y = f(x) = Hoạt động của học sinh Hoạt động của giáo viên - Ta có y = f(x) = = nên hàm số xác định trên tập R và có: y’ = f’(x) = (chú ý tại x = 0 hàm số không có đạo hàm). - Ta có bảng: x -Ơ 0 +Ơ y’ - || + y 0 CT Suy ra hàm đạt CT tại x = 0 ( y = 0) - Hướng dẫn học sinh tìm cực trị của hàm số đã cho theo từng bước mà quy tắc 1 đã phát biểu. - Gọi học sinh thực hiện. - Uốn nắn cách biểu đạt của học sinh. - Chú ý cho học sinh thấy được: Hàm số y = f(x) = không có đạo hàm tại x = 0 nhưng vẫn đạt CT tại đó. Đồ thị của hàm số y = f(x) = Bài tập về nhà: 1, 3, 4 trang 17 - 18 (SGK) Rút kinh nghiệm …………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… Tiết 5: Cực trị của Hàm số Ngày soạn 25/08/2008 A - Mục tiêu: Kiến thức - Nắm vững khái niệm cực đại, cực tiểu địa phương. Phân biệt được với khái niệm giá trị lớn nhất nhỏ nhất. - Nắm vững các điều kiện đủ để hàm số có cực trị. Kỹ năng : Tìm cực trị của hàm số, áp dụng được vào bài tập. Luyện kỹ năng áp dụng các quy tắc 1, 2 để tìm cực trị của hàm số. Tư duy thái độ : Tính cẩn thấn trong tính toán, tư duy logic khoa học C - Chuẩn bị của thầy và trò: - Sách giáo khoa và các biểu bảng. - Máy tính điện tử Casio fx - 570 MS. D - Tiến trình tổ chức bài học: ổn định lớp: Sỹ số lớp: ……………Ngày dạy………………… Kiểm tra bài cũ : Nêu quy tắc tìm cực trị cảu hàm số? Bài mới: Hoạt động 1: ( Kiểm tra bài cũ và Dẫn dắt khái niệm) Gọi học sinh chữa bài tập 1 trang 17: áp dụng quy tắc 1, hãy tìm các điểm cực trị của các hàm số sau: a) y = 2x3 + 3x2 - 36x - 10 c) y = x + Hoạt động của học sinh Hoạt động của giáo viên a) Tập xác định của hàm số là tập R. y’ = 6x2 + 6x - 36; y’ = 0 Û x = - 3; x = 2. Ta có bảng: x -Ơ - 3 2 +Ơ y’ + 0 - 0 + y CĐ - 54 71 CT Suy ra yCĐ = y(- 3) = 71; yCT = y(2) = - 54 b) Tập xác định của hàm số là R \ . y’ = 1 - = ; y’ = 0 Û x = - 1; x = 1. Lập bảng, suy ra: yCĐ= y(-1) = - 2; yCT = y(1) = 2 - Gọi 2 học sinh lên bảng trình bày bài giải đã chuẩn bị ở nhà. - Giao cho các học sinh bên dưới: + ở câu a) tính thêm y”(- 3); y”(2). + ở câu b) tính thêm y”(- 1); y”(1). - Phát vấn: Quan hệ giữa dấu của đạo hàm cấp hai với cực trị của hàm số ? - Giáo viên thuyết trình định lí 2 và Quy tắc 2 tìm cực trị của hàm số. Hoạt động 2: (Luyện tập. củng cố) Tìm các điểm cực trị của hàm số: y = f(x) = x4 - 2x2 + 6 Hoạt động của học sinh Hoạt động của giáo viên - Tập xác định của hàm số: R f’(x) = x3 - 4x = x(x2 - 4); f’(x) = 0 Û x = ± 2; x = 0. Quy tắc 1: Lập bảng xét dấu của f’(x) để suy ra các điểm cực trị. x -Ơ - 2 0 2 +Ơ f’ - 0 + 0 - 0 + f 2 CĐ 2 CT 6 CT Suy ra: fCT = f(± 2) = 2; fCĐ =f(0) = 6 Quy tắc 2: Tính f”(x) = 3x2 - 4 nên ta có: f”( ± 2) = 8 > 0 ị hàm số đạt cực tiểu tại x = ± 2 và fCT = f(± 2) = 2. f”(0) = - 4 < 0 ị hàm số đạt cực đại tại x = 0 và fCĐ = f(0) = 6. - Gọi 2 học sinh thực hiện bài tập theo 2 cách: Một học sinh dùng quy tắc 1, một học sinh dùng quy tắc 2 và so sánh các kết quả tìm được. - Chú ý cho học sinh: + Trường hợp y” = 0 không có kết luận gì về điểm cực trị của hàm số. + Khi nào nên dùng quy tắc 1, khi nào nên dùng quy tắc 2 ? - Đối với các hàm số không có đạo hàm cấp 1 (và do đó không có đạo hàm cấp 2) thì không thể dùng quy tắc 2. Hoạt động 3: (Luyện tập. củng cố) Tìm các điểm cực trị của hàm số : y = f(x) = sin2x Hoạt động của học sinh Hoạt động của giáo viên f’(x) = sin2x, f’(x) = 0 Û 2x = k Û x = k f”(x) = 2cos2x nên suy ra: f” = 2cos = l ẻ Z Suy ra: x = + lp là các điểm cực đại của hàm số. x = lp là các điểm cực tiểu của hàm số. - Hướng dẫn học sinh thực hiện giải bài tập theo quy tắc 2. (dễ dàng hơn do không phải xét dấu f’(x) - là hàm lượng giác). - Củng cố định lí 2 và quy tắc 2. Phân biệt các giá trị cực đại, cực tiểu với các giá trị lớn nhất, nhỏ nhất của hàm số. - Uốn nắn cách biểu đạt của học sinh. Hoạt động 4: (Củng cố) Có thể áp dụng quy tắc 1 để tìm cực trị của hàm số y = f(x) = được không ? Tại sao ? Hoạt động của học sinh Hoạt động của giáo viên - Thấy được hàm số đã cho không có đạo hàm cấp 1 tại x = 0, tuy nhiên ta có: y’ = f’(x) = nên có bảng: x -Ơ 0 +Ơ y’ - || + y 0 CT - Suy ra được fCT = f(0) = 0 ( cũng là GTNN của hàm số đã cho. - Hướng dẫn học sinh khá: Hàm số không có đạo hàm cấp 1 tại x = 0 nên không thể dùng quy tắc 2 (vì không có đạo hàm cấp 2 tại x = 0). Với hàm số đã cho, có thể dùng quy tắc 1, không thể dùng quy tắc 2. - Củng cố: Hàm số không có đạo hàm tại x0 nhưng vẫn có thể có cực trị tại x0. Bài tập về nhà: Làm các bài tập còn lại ở trang 17 - 18 (SGK). Rút kinh nghiệm …………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… Tiết 6: Cực trị của Hàm số. Ngày soạn 06/09/2008 A - Mục tiêu: - Có kĩ năng thành thạo tìm cực trị của hàm số. - Giải được loại toán về cực trị của Hàm số có chứa tham số. - Củng cố kiến thức cơ bản. B - Nội dung và mức độ: - Củng cố kiến thức về cực trị của Hàm số. - Chữa bài tập cho ở tiết 4 - 5. - Chú trọng các bài tập có chứa tham số. C - Chuẩn bị của thầy và trò: - Sách giáo khoa, sách bài tập. - Máy tính điện tử Casio fx - 570 MS. D - Tiến trình tổ chức bài học: ổn định lớp: Sỹ số lớp: …………Ngày dạy……………………. Kiểm tra bài cũ : Nêu quy tắc tìm cực trị của hàm số? Bài mới: Hoạt động 1: ( Kiểm tra bài cũ) Chữa bài tập 1 trang 17: áp dụng quy tắc 1, hãy tìm cực trị của các hàm số sau: d) y = f(x) = e) y = g(x) = x3(1 - x)2 Hoạt động của học sinh Hoạt động của giáo viên d) Tập xác định của hàm số: R \ y’ = f’(x) = ; y’ = 0 Û Lập bảng xét dấu của f’(x) và suy ra được: fCT = f(1 + ) = 2; fCĐ = f(1 - ) = - 2. e) Tập xác định của hàm số: R y’ = g’(x) = x2(1 - x)(3 - 5x); y’ = 0 Û Lập bảng xét dấu của g’(x), suy ra được: gCĐ = g = - Gọi 2 học sinh thực hiện bài tập đã chuẩn bị ở nhà. - Hướng dẫn học sinh tính cực trị của hàm số phân thức: y = f(x) = . yCĐ = fCĐ = ; yCT = fCT = - Củng cố quy tắc 1. - Uốn nắn cách biểu đạt của học sinh. Hoạt động 2: ( Kiểm tra bài cũ) áp dụng quy tắc 2, hãy tìm các điểm cực trị của các hàm số sau: c) y = f(x) = sin2x + cos2x d) y = g(x) = Hoạt động của học sinh Hoạt động của giáo viên c) Hàm số xác định trên tập R. y’ = f’(x) = 2(cos2x - sin2x). y’ = 0 Û tg2x = 1 Û x = . y” = f”(x) = - 4(sin2x + cos2x) nên ta có: f” = - 4 = Kết luận được: fCĐ = f = - fCT = f = - d) Hàm số xác định trên tập R. y’ = g’(x) = ; y’ = 0 Û x = k y” = nên suy ra g” = = Kết luận được: Hàm đạt cực đại tại x = mp; yCĐ = 10. Hàm đạt cực tiểu tại x = ; yCT = 5 - Gọi 2 học sinh thực hiện bài tập đã chuẩn bị ở nhà. - Củng cố quy tắc 2. - Uốn nắn cách biểu đạt của học sinh. Hoạt động 3: ( Kiểm tra bài cũ) Chữa bài tập 4 trang 18: Xác định m để hàm số: y = f(x) = đạt cực đại tại x = 2. Hoạt động của học sinh Hoạt động của giáo viên - Hàm số xác định trên R \ và ta có: y’ = f’(x) = - Nếu hàm số đạt cực đại tại x = 2 thì f’(2) = 0, tức là: m2 + 4m + 3 = 0 Û a) Xét m = -1 ị y = và y’ = . Ta có bảng: x -Ơ 0 1 2 +Ơ y’ + 0 - - 0 + y CĐ CT CT Suy ra hàm số không đạt cực đại tại x = 2 nên giá trị m = - 1 loại. b) m = - 3 ị y = và y’ = Ta có bảng: x -Ơ 2 3 4 +Ơ y’ + 0 - - 0 + y CĐ CT Suy ra hàm số đạt cực đại tại x = 2. Nên giá trị m = - 3 là giá trị cần tìm. - Phát vấn: Viết điều kiện cần và đủ để hàm số f(x) đạt cực đại (cực tiểu) tại x = x0 ? - Củng cố: + Điều kiện cần và đủ để hàm số có cực đại tại điểm x = x0: Có f’(x0) = 0 (không tồn tại f’(x0)) và f’(x) dổi dấu từ dương sang âm khi đi qua x0. + Điều kiện cần và đủ để hàm số có cực tiểu tại điểm x = x0: Có f’(x0) = 0 (không tồn tại f’(x0)) và f’(x) dổi dấu từ âm sang dương khi đi qua x0. - Phát vấn: Có thể dùng quy tắc 2 để viết điều kiện cần và đủ để hàm số f(x) đạt cực đại (cực tiểu) tại x0 được không ? - Gọi học sinh lên bảng thực hiện bài tập. Hoạt động 4: (Củng cố) Chữa bài tập 3 trang 17: Chứng minh rằng hàm số y = - không có đạo hàm tại x = 0 nhưng vẫn đạt cực đại tại điểm đó. Hoạt động của học sinh Hoạt động của giáo viên - Chứng minh được hàm số đã cho không có đạo hàm tại x = 0. - Lập bảng để tìm được yCĐ = y(0) = 0. Hoặc có thể lý luận: ị yCĐ = y(0) = 0. - Gọi học sinh lên bảng thực hiện giải bài tập. - HD: Hàm số y = - không có đạo hàm tại x = 0 vì: = Bài tập về nhà: Hoàn thiện các bài tập ở trang 17 - 18. Rút kinh nghiệm …………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… Tiết 7-8: Giá trị lớn nhất và nhỏ nhất của hàm số Ngày soạn 06/09/2008 A - Mục tiêu: Kiến thức - Nắm được cách tính giá trị lớn nhất, nhỏ nhất trên một đoạn, của hàm số. - Nắm được điều kiện đủ để hàm số có giá trị lớn nhất, giá trị nhỏ nhất. Kỹ năng - Kỹ năng tìm GTLN,GTNN của hàm số trên đoạn và trên khoảng - Kỹ năng vận dụng giải bài tập Tư duy và thái độ Tư duy khoa học logic, cẩn thận trong tính toán B - Chuẩn bị của thầy và trò: - Sách giáo khoa, sách bài tập. - Máy tính điện tử Casio fx - 570 MS. D - Tiến trình tổ chức bài học: ổn định lớp: Sỹ số lớp: ………….Ngày dạy…………………….. Bài mới: Hoạt động 1: (Kiểm tra bài cũ) Tính giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = x2 trên các đoạn: a) [- 3; 0] b) Hoạt động của học sinh Hoạt động của giáo viên - Thực hiện giải bài tập. - Nhận xét để tìm được các giá trị lớn nhất, nhỏ nhất của hàm số trên các đoạn đã cho. - Gọi hai học sinh lên giải bài tập. - P

File đính kèm:

  • docGT12 T1-9.doc