A/ Mục tiêu:
1 Về kiến thức: nắm vững các khái niệm vectơ ,độ dài vectơ,vectơ không, phương hướng vectơ, hai vectơ bằng nhau.
2 Về kỹ năng: dựng được một vectơ bằng một vectơ cho trước,chứng minh hai vectơ bằng nhau,xác định phương hướng vectơ.
3 Về tư duy Về thái độ:: biết tư duy linh hoạt trong việc hình thành khái niệm mới ,giải các ví dụ.
rèn luyện tính cẩn thận, tích cực hoạt động của học sinh, liên hệ được kiến thức vào trong thực tế.
B/ Chuẩn bị của thầy và trò:
§ Giáo viên: giáo án, phấn màu, bảng phụ,thước.
§ Học sinh: xem bi trước, bảng phụ theo nhĩm.
Phương pháp dạy học:
Vấn đáp gợi mở, nêu vấn đề,diễn giải, xen các hoạt động nhóm.
C/ Tiến trình của bài học :
1/ Ổn định lớp : ( 1 phút )
2/ Bài mới:
88 trang |
Chia sẻ: oanh_nt | Lượt xem: 908 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Hình học 10 - Cơ bản - Năm học 2008 - 2009 Trường THPT Nà Tấu - Điện Biên, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày giảng:
Tiết: 1
Chương I:
A/ Mục tiêu:
Về kiến thức: nắm vững các khái niệm vectơ ,độ dài vectơ,vectơ không, phương hướng vectơ, hai vectơ bằng nhau.
Về kỹ năng: dựng được một vectơ bằng một vectơ cho trước,chứng minh hai vectơ bằng nhau,xác định phương hướng vectơ.
Về tư duy Về thái độ:: biết tư duy linh hoạt trong việc hình thành khái niệm mới ,giải các ví dụ.
rèn luyện tính cẩn thận, tích cực hoạt động của học sinh, liên hệ được kiến thức vào trong thực tế.
B/ Chuẩn bị của thầy và trò:
Giáo viên: giáo án, phấn màu, bảng phụ,thước.
Học sinh: xem bài trước, bảng phụ theo nhĩm.
Phương pháp dạy học:
Vấn đáp gợi mở, nêu vấn đề,diễn giải, xen các hoạt động nhóm.
C/ Tiến trình của bài học :
1/ Ổn định lớp : ( 1 phút )
2/ Bài mới:
TG
HĐGV
HĐHS
NỘI DUNG GHI BẢNG
HĐ1: Hình thành khái niệmvectơ
Cho học sinh quan sát H1.1
Nói: từ hình vẽ ta thấy chiều mũi tên là chiều chuyển động của các vật. Vậy nếu đặt điểm đầu là A , cuối là B thì đoạn AB có hướng AB .Cách chọn như vậy cho ta một vectơ AB.
Hỏi: thế nào là một vectơ ?
GV chính xác cho học sinh ghi. Nói:vẽ một vectơ ta vẽ đoạn thẳng cho dấu mũi tên vào một đầu mút, đặt tên là :A (đầu), B(cuối).
Hỏi: với hai điểm A,B phân biệt ta vẽ đươc bao nhiêu vectơ?
Nhấn mạnh: vẽ hai vectơ qua A,B
Quan sát hình 1.1 hình dung hướng chuyển động của vật.
Học sinh trả lời
Vectơ là đoạn thẳng có hướng
Học sinh trả lời
Vẽ hai vectơ.
I. Khái niệm: vectơ:
ĐN:vectơ là một đoạn thẳng có hướng
KH: (A điểm đầu, B điểm cuối)
Hay ,,…,,,…
B
A
HĐ2: Khái niệm vectơ cùng phương ,cùng hướng.
Cho học sinh quan sát H 1.3 gv vẽ sẵn.
Hỏi: xét vị trí tương đối các giá của vectơ và; và;và.
Nói: và cùng phương.
và cùng phương.
vậy thế nào là 2 vectơ cùng phương?
Yêu cầu: xác định hướng của cặp vectơ và; và .
Nhấn mạnh: hai vectơ cùng phương thì mới xét đến cùng hướng hay ngược hướng
Hỏi:cho 3 điểm A,B,C phân biệt.
thẳng hàng thì , có gọi là cùng phương không? Ngược lại A,B,C không thẳng hàng thì sao?
Cho học sinh rút ra nhận xét.
Hỏi: nếu A,B,C thẳng hàng thì và cùng hướng(đ hay s)?
Cho học sinh thảo luân nhóm.
GV giải thích thêm
Học sinh quan sát hình vẽ và trả lời .
và cùng giá
và giá song son
và giá cắt nhau.
Hai vectơ có giá song song hoặc trùng nhau thìcùng phương.
và cùng hướng
và ngược hướng
A,B,C thẳng hàng thì
và cùng phương và ngược lại.
Học sinh thảo luận nhóm rồi đại diện nhóm trình bày giải thích.
II .Vectơ cùng phương cùng hướng:
ĐN:hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.
Hai vectơ cùng phương thì có thể cùng hướng hoặc ngược hướng
Nhận xét:ba điểm A,B,C phân biệt thẳng hàng KVCK và cùng phương.
HĐ3: giới thiệu ví dụ:
Hỏi : khi nào thì vectơ cùng phương với vectơ ?
Nói : vậy điểm A nằm trên đường
thẳng d qua O và có giá song song hoặc trùng với giá của vectơ
Hỏi : khi nào thì ngược hướng với vectơ ?
Nói : vậy điểm A nằm trên nửa đường thẳng d sao cho ngược hướng với vectơ
TL: khi A nằm trên đường thẳng song song hoặc trùng với giá vectơ
học sinh ghi vào vở
TL:khi A nằm trên nửa đường thẳng d sao cho ngược hướng với vectơ
Học sinh ghi vào vở
Ví dụ:
Cho điểm O và 2 vectơ
Tìm điểm A sao cho :
a/ cùng phương với vectơ
b/ ngược hướng với vectơ
GIẢI
a/ Điểm A nằm trên đường
thẳng d qua O và có giá song song hoặc trùng với giá của vectơ
b/ Điểm A nằm trên nửa đường thẳng d sao cho ngược hướng với vectơ
3. Củõng cố:
Cho 5 điểm phân biệt A,B,C,D,E , có bao nhiêu vectơ khác khôngcó điểm đầu và cuối là các điểm đó
Cho học sinh làm theo nhóm.
4.Dặn dò:
-Học bài
-Làm bài tập 1,2 .SGK T7.
Phê duyệt của tổ chuyên mơn (BGH) : Ngày .....tháng.....năm 20
----------------------------------------------------------- Hết tiết 1 ---------------------------------------------------------
Ngày giảng:
Tiết: 2
C/ Tiến trình của bài học :
1/ Ổn định lớp : ( 1 phút )
2/ Kiểm tra bài củ:
Câu hỏi: Thế nào là hai vectơ cùng phương ? cho 4 điểm A,B,C,D có tất cả bao
nhiêu vectơ khác không có điểm đầu và cuối là các điểm đó?kể ra
3/ Bài mới:
TG
HĐGV
HĐHS
NỘI DUNG GHI BẢNG
HĐ1:Hình thành khái niệm hai vectơ bằng nhau.
Giới thiệu độ dài vectơ.
Hỏi: hai đoạn thẳng bằng nhau khi nào? Suy ra khái niệm hai vectơ bằng nhau.
Hỏi: = đúng hay sai?
GV chính xác khái niệm hai vectơ bằng nhau cho học sinh ghi.
.
Học sinh trả lời .
Khi độ dài bằng nhau và cùng hướng.
Học sinh trả lời
Là sai.
III Hai vectơ bằng nhau:
ĐN:hai vectơ và đươc gọi là bằng nhau nếu và cùng hướng và cùng độ dài.
KH: =
Chú ý:với và điểm o cho trước tồn tại duy nhất 1 điểm A sao cho=
HĐ2:Hình thành khái niệm hai vectơ bằng nhau.
Hỏi: cho 1 vectơ có điểm đầu và cuối trùng nhau thì có độ dài bao nhiêu?
Nói: gọi là vectơ không
Yêu cầu: xđ giá vectơ không từ đó rút ra kl gì về phương ,hướng vectơ không.
GV nhấn mạnh cho học sinh ghi.
Học sinh trả lời
Có độ dài bằng 0
Vectơ có phương hướng tuỳ ý.
III Vectơ không:
ĐN: là vectơ có điểm đầu và cuối trùng nhau
KH:
QU:+mọi vectơ không đều bằng nhau.
+vectơ không cùng phương cùng hướng với mọi vectơ.
HĐ3: giới thiệu ví dụ:
Gv vẽ hình lên bảng
A
D F
E
B C
Hỏi: khi nào thì hai vectơ bằng nhau ?
Vậy khi cần có đk gì?
Dựa vào đâu ta có DE = AF ?
GV gọi 1 học sinh lên bảng trình bày lời giải
Gv nhận xét sữa sai
Học sinh vẽ vào vở
TL: khi chúng cùng hướng , cùng độ dài
TL: cần có DE = AF và
cùng hướng
TL: dựa vào đường trung bình tam giác
Học sinh lên thực hiện
Ví dụ :
Cho tam giác ABC có D,E,F lần lượt là trung điểm của AB,BC,CD
Cmr :
Giải
Ta có DE là đường TB
của tam giác ABC
nên DE =AC=AF
DE AF
Vậy
4. Cũng cố:Bài toán:cho hình vuông ABCD .Tìm tất cả các cặp vectơ bằng nhau có điểm đầu và cuối là các đỉnh hình vuông.
Cho học sinh làm theo nhóm.
5.Dặn dò:
-Học bài
-Làm bài tập3,4 SGK T7.
Phê duyệt của tổ chuyên mơn (BGH) : Ngày .....tháng.....năm 20
----------------------------------------------------------- Hết tiết 2 ---------------------------------------------------------
Ngày giảng:
Tiết: 3
A/ Mục tiêu:
Về kiến thức: nắm được các bài toán về vectơ như phương, hướng, độ dài, các bài toán chứng minh vectơ bằng nhau.
Về kỹ năng: học sinh giải được các bài toán từ cơ bản đến nâng cao,lập luận 1 cách logíc trong chứng minh hình học.
Về tư duy Về thái độ: giúp học sinh tư duy linh hoạt sáng tạo trong việc tìm hướng giải hoặc chứng minh 1 bài toán vectơ.
học sinh tích cực trong các hoạt động, liên hệ được toán học vào trong thực tế
B/ Chuẩn bị của thầy và trò:
Giáo viên: thước, giáo án, phấn màu, bảng phụ.
Học sinh: xem bài trước, bảng phụ theo nhĩm.
Phương pháp dạy học:
Diễn giải, nêu vấn đề, hỏi đáp.
C/ Tiến trình của bài học :
1/ Ổn định lớp : ( 1 phút )
2/ Kiểm tra bài củ:
Nêu điều kiện để hai vectơ bằng nhau?
Tìm các cặp vectơ bằng nhau và bằng vectơ trong hình bình hành ABCD
tâm O.
3/ Bài mới:
TG
HĐGV
HĐHS
GHI BẢNG
HĐ1: bài tập 1
Gọi 1 học sinh làm bài tập 1) minh hoạ bằng hình vẽ.
Gv nhận xét sữa sai và cho điểm.
Học sinh thực hiện bài tập 1)
a. đúng
b. đúng
HĐ2: bài tập 2
Yêu cầu học sinh sữa nhanh bài tập 2
chứa biến.
Học sinh thực hiện bài tập 2)
2) Cùng phương Cùng hướng
,
Ngược hướng
,
HĐ3: bài tập 3
Hỏi: Chỉ ra gt & kl của bài toán?
Để chứng minh tứ giác là hình bình hành ta chứng minh điều gì?
Khi cho là cho ta biết điều gì?
Vậy từ đó có kl ABCD là hình bình hành được chưa?
Yêu cầu: 1 học sinh lên bảng trình bày lời giải
Gv sữa sai
Trả lời: gt:
Kl: ABCD là hình bình hành
* Có 1 cặp cạnh đối song song và bằng nhau.
* tức là
Kết luận đựơc.
Học sinh thực hiện bài tập 3)
3) GT:
KL: ABCD là hình bình hành.
Giải: Ta có:
Vậy tứ giác ABCD là hình bình hành.
HĐ4: bài tập 4
Yêu cầu: Học sinh vẽ hình lục giác đều.
1 học sinh thực hiện câu a)
1 học sinh thực hiện câu b)
Gv nhận xét sữa sai và cho điểm.
Học sinh thực hiện bài tập 3)
4) a. Cùng phương với là
b. Bằng là
HĐ5: Cho bài tập bổ sung
Gv hướng dẫn cho học sinh về làm
Học sinh chép bài tập về nhà làm.
BTBS:Cho tứ giác ABCD, M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.
CM: và
3. Cũng cố:
-Xác định vectơ cần biết độ dài và hướng.
-Chứng minh 2 vectơ bằng nhau thì c/m cùng độ dài và cùng hướng
4. Dặn dò:
- Làm bài tập.
- Xem tiếp bài “tổng và hiệu”.
Phê duyệt của tổ chuyên mơn (BGH) : Ngày .....tháng.....năm 20
----------------------------------------------------------- Hết tiết 3 ---------------------------------------------------------
Ngày giảng:
Tiết: 4
A/ Mục tiêu:
Về kiến thức: Học sinh nắm được khái niệm vectơ tổng, vectơ hiệu, các tính chất, nắm được quy tắc ba điểm và quy tắc hình bình hành.
Về kỹ năng: Học sinh xác định được vectơ tổng và vectơ hiệu vận dụng được quy tắc hình bình hành, quy tắc ba điểm vào giải toán.
Về tư duy Về thái độ:: biết tư duy linh hoạt trong việc hình thành khái niệm mới, trong việc tìm hướng để chứng minh một đẳng thức vectơ.
rèn luyện tính cẩn thận, chính xác, linh hoạt trong các hoạt động, liên hệ kiến thức đã học vào trong thực tế.
B/ Chuẩn bị của thầy và trò:
Giáo viên: giáo án, phấn màu, bảng phụ, thước.
Học sinh: xem bài trước, thước.
Phương pháp dạy học:
Vấn đáp gợi mở, nêu vấn đề,diễn giải, xen các hoạt động nhóm.
C/ Tiến trình của bài học :
1/ Ổn định lớp : ( 1 phút )
2/ Kiểm tra bài củ:
Câu hỏi: Hai vectơ bằng nhau khi nào?
Cho hình vuông ABCD, có tất cả bao nhiêu cặp vectơ bằng nhau?
Cho so sánh với
3/ Bài mới:
TG
HĐGV
HĐHS
NỘI DUNG GHI BẢNG
HĐ1: hình thành khái niệm tổng hai vectơ
GV giới thiệu hình vẽ 1.5 cho học sinh hình thành vectơ tổng.
GV vẽ hai vectơ bất kì lên bảng.
Nói: Vẽ vectơ tổng bằng cách chọn A bất kỳ, từ A vẽ:
ta được vectơ tổng
Hỏi: Nếu chọn A ở vị trí khác thì biểu thức trên đúng không?
Yêu cầu: Học sinh vẽ trong trường hợp vị trí A thay đổi.
Học sinh làm theo nhóm 1 phút
Gọi 1 học sinh lên bảng thực hiện.
GV nhấn mạnh định nghĩa cho học sinh ghi.
Học sinh quan sát hình vẽ 1.5
Học sinh theo dõi
Trả lời: Biểu thức trên vẫn đúng.
Học sinh thực hiện theo nhóm.
Một học sinh lên bảng thực hiện.
I. Tổng của hai vectơ :
Định nghĩa: Cho hai vectơ . Lấy một điểm A tuỳ ý vẽ . Vectơ được gọi làtổng của hai vectơ
KH:
Vậy
Phép toán trên gọi là phép cộng vectơ.
B
C
A
HĐ2: Giới thiệu quy tắc hình bình hành.
Cho học sinh quan sát hình 1.7
Yêu cầu: Tìm xem là tổng của những cặp vectơ nào?
Nói: là qui tắc hình bình hành.
GV cho học sinh ghi vào vỡ.
Học sinh quan sát hình vẽ.
TL:
II. Quy tắc hình bình hành:
B C
A D
Nếu ABCD là hình bình hành thì
HĐ3: Giới thiệu tính chất của phép cộng các vectơ.
GV vẽ 3 vectơ lên bảng.
Yêu cầu : Học sinh thực hiện nhóm theo phân công của GV.
1 nhóm: vẽ
1 nhóm: vẽ
1 nhóm: vẽ
1 nhóm: vẽ
1 nhóm: vẽ và
Gọi đại diện nhóm lên vẽ.
Yêu cầu : Học sinh nhận xét căp vectơ
* và
* và
* và
GV chính xác và cho học sinh ghi
Học sinh thực hiện theo nhóm
III. Tính chất của phép cộng vectơ :
Với ba vectơ tuỳ ý ta có:
=
=
=
4/ Cũng cố: Nắm cách vẽ vectơ tổng
Nắm được qui tắc hình bình hành.
5/ Dặn dò: Học bài
Xem tiếp bài: “Tổng Và Hiệu Của Hai Vectơ”.
Phê duyệt của tổ chuyên mơn (BGH) : Ngày .....tháng.....năm 20
----------------------------------------------------------- Hết tiết 4 ---------------------------------------------------------
Ngày giảng:
Tiết: 5
C/ Tiến trình của bài học :
1/ Ổn định lớp : ( 1 phút )
2/ Kiểm tra bài củ:
Câu hỏi: Với 3 điểm M, N, P vẽ 3 vectơ trong đó có 1 vectơ là tổng của 2 vectơ còn lại.
Tìm Q sao cho tứ giác MNPQ là hình bình hành.
3/ Bài mới:
TG
HĐGV
HĐHS
NỘI DUNG GHI BẢNG
HĐ1: hình thành khái niệm vectơ đối.
GV vẽ hình bình hành ABCD lên bảng.
Yêu cầu : Học sinh tìm ra các cặp vectơ ngược hướng nhau trên hình bình hành ABCD
Hỏi: Có nhận xét gì về độ dài các cặp vectơ ?
Nói: là hai vectơ đối nhau. Vậy thế nào là hai vectơ đối nhau?
GV chính xác và cho học sinh ghi định nghĩa.
Yêu cầu: Học sinh quan sát hình 1.9 tìm cặp vectơ đối có trên hình.
GV chính xác cho học sinh ghi.
Giới thiệu HĐ3 ở SGK.
Hỏi: Để chứng tỏ đối nhau cần chứng minh điều gì?
Có tức là vectơ nào bằng ? Suy ra điều gì?
Yêu cầu : 1 học sinh lên trình bày lời giải.
Nhấn mạnh: Vậy
Trả lời:
Trả lời:
Trả lời: hai vectơ đối nhau là hai vectơ có cùng độ dài và ngược hướng.
Học sinh thực hiện.
Trả lời: chứng minh cùng độ dài và ngược hướng.
Tức là
Suy ra cùng độ dài và ngược hướng.
IV. Hiệu của hai vectơ :
Vectơ đối:
Định nghĩa: Cho , vectơ có cùng độ dài và ngược hướng với được gọi là vectơ đối của.
KH:
Đặc biệt: vectơ đối của vectơ là
VD1: Từ hình vẽ 1.9
Ta có:
Kết luận:
HĐ2: Giới thiệu định nghĩa hiệu hai vectơ.
Yêu cầu: Nêu quy tắc trừ hai số nguyên học ở lớp 6?
Nói: Quy tắc đó được áp dụng vào phép trừ hai vectơ.
Hỏi:
GV cho học sinh ghi định nghĩa.
Hỏi: Vậy với 3 điểm A, B, C cho ta:
GV chính xác cho học sinh ghi.
GV giới thiệu VD2 ở SGK.
Yêu cầu : Học sinh thực hiện VD2 (theo quy tắc ba điểm) theo nhóm
Gọi học sinh đại diện 1 nhóm trình bày.
GV chính xác, sữa sai.
Trả lời: Trừ hai số nguyên ta lấy số bị trừ cộng số đối của số trừ.
Trả lời:
Xem ví dụ 2 ở SGK.
Học sinh thực hiện theo nhóm cách giải theo quy tắc theo quy tắc ba điểm.
Một học sinh lên bảng trình bày.
2. Định nghĩa hiệu hai vectơ :
Cho và . Hiệu hai vectơ , la ømột vectơ
KH:
Vậy
Phép toán trên gọi là phép trừ vectơ.
Quy tắc ba điểm: Với A, B, C bất kỳ. Ta có:
* Phép cộng:
*Phép trừ:
VD2: (xem SGK)
Cách khác:
HĐ3: Giới thiệu phần áp dụng.
Yêu cầu : 1 học sinh chứng minh I là trung điểm AB
1 học sinh chứng minh I làtrung điểm AB
GV chính xác và cho học sinh rút ra kết luận.
GV giải câu b) và giải thích cho học sinh hiểu.
Học sinh thực hiện theo nhóm câu a).
2 học sinh lên bảng trình bày.
V. Aùp Dụng:
Học sinh xem SGK
Kết luận:
a) I là trung điểm AB
b) G là trọng tâm
4/ Cũng cố: Nhắc lại các quy tắc ba điểm, quy tắc hình bình hành.
Nhắc lại tính chất trung điểm, tính chất trọng tâm.
5/ Dặn dò: Học bài
Làm bài tập ở SGK.
Phê duyệt của tổ chuyên mơn (BGH) : Ngày .....tháng.....năm 20
----------------------------------------------------------- Hết tiết 5 ---------------------------------------------------------
Ngày giảng:
Tiết: 6
A/ Mục tiêu:
Về kiến thức: Học sinh biết cách vận dụng các quy tắc ba điểm và quy tắc hình bình hành, các tính chất về trung điểm, trọng tâmvào giải toán, chứng minh các biểu thức vectơ.
Về kỹ năng: rèn luyện học sinh kỹ năng lập luận logic trong các bài toán, chứng minh các biểu thức vectơ.
Về tư duy Về thái độ:: biết tư duy linh hoạt trong việc tìm hướng để chứng minh một đẳng thức vectơ và giải các dạng toán khác.
Học sinh tích cực chủ động giải bài tập, biết liên hệ kiến thức đã học vào trong thực tế.
B/ Chuẩn bị của thầy và trò:
Giáo viên: giáo án, phấn màu, thước.
Học sinh: làm bài trước, thước.
Phương pháp dạy học:
Vấn đáp gợi mở, diễn giải, xen các hoạt động nhóm.
C/ Tiến trình của bài học :
1/ Ổn định lớp : ( 1 phút )
2/ Kiểm tra bài củ:
Câu hỏi: Cho 3 điểm bất kỳ M, N, Q
HS1 Nêu quy tắc ba điểm với 3 điểm trên và thực hiện bài tập 3a?
HS2 Nêu quy tắc trừ với 3 điểm trên vàthực hiện bài tập 3b)
3/ Bài mới:
TG
HĐGV
HĐHS
NỘI DUNG GHI BẢNG
HĐ1: Giới tiệu bài 1
Chia lớp thành 2 nhóm, 1 nhóm vẽ vectơ , 1 nhóm vẽ vectơ
Gọi đại diện 2 nhóm lên trình bày.
GV nhận xét sữa sai.
Học sinh vẽ vectơ theo nhóm.
Đại diện 2 nhóm lên trình bày
Học sinh theo dõi
1) *
Vẽ
Vẽ hình.
*
Vẽ hình.
HĐ2: giới thiệu bài 5
Gv gợi ý cách tìm -
Nói: đưa về quy tắc trừ bằng cách từ điểm A vẽ
Yêu cầu : học sinh lên bảng thực hiện vẽ và tìm độ dài của
Gv nhận xét, cho điểm, sữa sai
1 học sinh lên bảng tìm
Vẽ theo gợi ývà tìm độ dài
5) vẽ hình
+ =
==AC=a
+ Vẽ
=
=
Ta có CD=
= =a
vậy
HĐ3: Giới thiệu bài 6
Gv vẽ hình bình hành lên bảng
Yêu cầu: học sinh thực hiện bài tập 6 bằng cách áp dụng các quy tắc
Gọi từng học sinh nhận xét
Gv cho điểm và sữa sai
4 học sinh lên bảng mỗi học sinh thực hiện 1 câu
các học sinh khác nhận xét
6) a/
Ta có: nên:
b/ ta có:
c/
(hn)
d/
VT=
HĐ4: Giới thiệu bài 8
Hỏi: suy ra điều gì?
Khi nào thì ?
Từ đó kết luận gì về hướng và độ dài của và
Học sinh trả lời
Suy ra
và cùng độ dài , ngược hướng
vậy và đối nhau
8)ta có :
Suy ra
và cùng độ dài , ngược hướng
vậy và đối nhau
HĐ5: Giới thiệu bài 10
Yêu cầu:nhắc lại kiến thứcvậtlí đã học, khi nào vật đúng yên ?
Gv vẽ lực
Vậy
Hỏi: khi nào thì ?
KL gì về hướng và độ lớn
Của ?
Yêu cầu: học sinh tìm
TL: vật đúng yên khi tổng lực bằng 0
TL:khiø đối nhau
cùng độ dài , ngược hướng
=ME
=2.=100N
10) vẽ hình
ta có:
cùng độ dài , ngược hướng
=ME
=2.=100N
4/ Cũng cố:Học sinh nắm cách tính vectơ tổng , hiệu
Nắm cách xác định hướng, độ dài của vectơ
5/ Dặn dò: xem bài tiếp theo “tích của vectơ với 1 số”
Phê duyệt của tổ chuyên mơn (BGH) : Ngày .....tháng.....năm 20
----------------------------------------------------------- Hết tiết 6 ---------------------------------------------------------
Ngày giảng:
Tiết: 7
A/ Mục tiêu:
Về kiến thức: Học sinh hiểu được định nghĩa tích của vectơ với một số và các tính chất của nó biết điều kiện cần và đủ để hai vectơ cùng phương, tính chất của trung điểm, trọng tâm.
Về kỹ năng: Học sinh biết biểu diễn ba điểm thẳng hàng, tính chất trung điểm, trọng tâm. Hai điểm trùng nhau bằng biểu thức vectơ và vận dụng thành thạo các biểu thức đó vào giải toán.
Về tư duy Về thái độ:: Học sinh nhớ chính xác lý thuyết, vận dụng một cách linh hoạt lý thuyết đó vào trong thực hành giải toán.
Cẩn thận, chính xác, tư duy logic khi giải toán vectơ, giải được các bài toán tương tự.
B/ Chuẩn bị của thầy và trò:
Giáo viên: giáo án, phấn màu, bảng phụ, thước.
Học sinh: xem bài trước, bảng phụ cho nhóm.
Phương pháp dạy học:
Vấn đáp gợi mở, nêu vấn đề, xen các hoạt động nhóm.
C/ Tiến trình của bài học :
1/ Ổn định lớp : ( 1 phút )
2/ Kiểm tra bài củ:
Câu hỏi: Cho bốn điểm A, B, C, D. Chứng minh: .
3/ Bài mới:
TG
HĐGV
HĐHS
NỘI DUNG GHI BẢNG
HĐ1: hình thành định nghĩa.
Nói: Với số nguyên a ta có: a+a=2a. Còn với
Yêu cầu: Học sinh tìm vectơ . Gọi 1 học sinh lên bảng
GV Nhận xét sữa sai.
Nhấn mạnh: là 1 vectơ có độ dài bằng , cùng hướng .
Yêu cầu: học sinh rút ra định nghĩa tích của với k.
GV chính xác cho học sinh ghi.
Yêu cầu: Học sinh xem hình 1.13 ở bảng phụ tìm:
Gọi học sinh đứng lên trả lời và giải thích.
Trả lời:
là 1 vectơ cùng hướng có độ dài bằng 2 lần vectơ .
Học sinh rút ra định nghĩa.
Học sinh xem hình vẽ 1.13
Trả lời:
I. Định nghĩa :
Cho số k và
Tích của vectơ với k là một vectơ.KH: cùng hướng với nếu k > 0 và ngược hướng với nếu k < 0 và có độ dài bằng
* Quy ước:
VD: hình 1.13 (bảng phụ)
HĐ2: Giới thiệu tính chất.
Nói: Tính chất phép nhân vectơ với 1 số gần giống với tính chất phép nhân số nguyên.
Hỏi: (t/c gì ?)
(t/c gì ?)
(t/c gì ?)
(t/c gì ?)
(t/c gì ?)
GV chính xác cho học sinh ghi.
Hỏi: Vectơ đối của là?
Suy ra vectơ đối của và là?
Gọi học sinh trả lời.
GV nhận xét sữa sai.
Học sinh nhớ lại tính chất phép nhân số nguyên
Học sinh trả lời lần lượt từng câu
Trả lời:vectơ đối của là
Vectơ đối của là-
Vectơ đối của là
II. Tính chất:
Với2 vectơ và bất kì.Với mọi số h, k ta có:
HĐ3: Giới thiệu trung điểm đoạn thẳng và trọng tâm tam giác.
Yêu cầu : Học sinh nhắc lại tính chất trung điểm của đoạn thẳng ở bài trước.
Yêu cầu : Học sinh áp dụng quy tắc trừ với M bất kỳ.
GV chính xác cho học sinh ghi.
Yêu cầu: Học sinh nhắc lại tính chất trọng tâm G của và áp dụng quy tắc trừ đối với M bất kỳ.
GV chính xác và cho học sinh ghi
Trả lời:
Học sinh thực hiện:
Trả lời:
III. Trung điểm của đoạn thẳng và trọng tâm tam giác :
a) Với M bất kỳ, I là trung điểm của đoạn thẳng AB, thì:
b) G là trọng tâm thì:
HĐ4: Nêu điều kiện để 2 vectơ cùng phương.
Nói: Nếu ta đặt
Yêu cầu:Học sinh có nhận xét gì về hướng của và dựa vào đ/n.
Hỏi: khi nào ta mới xác định được và cùng hay ngược hướng?
Nhấn mạnh: Trong mỗi trường hợp của k thì và là 2 vectơ cùng phương.Do vậy ta có điều kiện cần và đủ để , là:
Yêu cầu: Suy ra A, B, C thẳng hàng thì có biểu thức vectơ nào?
Trả lời: và cùng hướng khi k > 0.
và ngược hướng khi k < 0.
Trả lời: , cùng phương
Trả lời:
IV. Điều kiện để hai vectơ cùng phương :
Điều kiện cần và đủ để hai vectơ và() cùng phương là có một số k để .
Nhận xét:ba điểm A, B, C phân biệt thẳng hàng để
HĐ5: Hướng dẫn phân tích 1 vectơ theo 2 vectơ không cùng phương.
GV hướng dẫn cách phân tích 1 vectơ theo , như SGK từ đó hình thành định lí cho học sinh ghi.
GV giới thiệu bài toán vẽ hình lên bảng.
Hỏi: theo tính chất trọng tâm .Vậy
Yêu cầu: Tương tự thực hiện các vectơ còn lại theo nhóm.
Hỏi:
Từ đó ta kết luận gì?
Học sinh chú ý theo dõi.
Học sinh đọc bài toán vẽ hình vào vỡ.
Trả lời:
Học sinh thực hiện các vectơ còn lại.
C, I, K thẳng hàng
V. Phân tích một vectơ theo hai vectơ không cùng phương:
Định lý: Cho hai vectơ , không cùng phương. Khi đó mọi vectơ đều phân tích được một cách duy nhất theo và , nghĩa là:
sao cho
Bài toán: (SGK)
4/ Cũng cố: Nắm định nghĩa, tính chất của phép nhân vectơ với một số.
Nắm các biểu thức vectơ của trung điểm đoạn thẳng và trọng tâm tam giác.
Nắm điều kiện để hai vectơ cùng phương.
5/ Dặn dò: Học bài
Làm bài tập SGK.
Phê duyệt của tổ chuyên mơn (BGH) : Ngày .....tháng.....năm 20
----------------------------------------------------------- Hết tiết 7 ---------------------------------------------------------
Ngày giảng:
Tiết: 8
A/ Mục tiêu:
Về kiến thức: Học sinh nắm các dạng toán như: Biểu diễn một vectơ theo hai vectơ không cùng phương, nắm các dạng chứng minh một biểu thức vectơ.
Về kỹ năng: Học sinh biết cách biểu diễn một vectơ theo hai vectơ không cùng phương, áp dụng thành thạo các tính chất trung điểm, trọng tâm,các quy tắc vào chứng minh biểu thức vectơ.
Về tư duy Về thái độ:: Học sinh linh hoạt trong việc vận dụng giả thiết, lựa chọn các tính chất một cách họp lívào giải toán.
Cẩn thận, lập luận logic hoàn chỉnh hơn khi chứng minh một bài toán vectơ.
B/ Chuẩn bị của thầy và trò:
Giáo viên: giáo án, phấn màu, thước.
Học sin
File đính kèm:
- Giao an hinh 10cb-hot-new2009-2010 {chao nam hoc moi}.doc