I. Mục tiêu
1.1 Kiến thức: Giúp học sinh
- Viết được phương trình đường tròn trong một số trường hợp đơn giản.
- Xác định được tâm và bán kính của đường tròn có phương trình dạng
(x - a)¬2 + (y – b)2 = R2. Biết được khi nào phương trình x2 + y2 - 2ax - 2by + c = 0 là phương trình đường tròn và chỉ ra được tâm, bán kính của đường tròn đó.
- Viết được phương trình tiếp tuyến của đường tròn khi biết tọa độ của tiếp điểm hoặc biết một yếu tố xác định tiếp tuyến đó.
1.2 Kỹ năng
- Viết được phương trình đường tròn: đi qua 3 điểm, biết tâm và bán kính.
- Xác định được tiếp tuyến của đường tròn.
1.3 Thái độ
- Liên hệ được trong thực tế các vấn đề liên quan đến đường tròn.
- Sáng tạo bài toán mới.
- Phát huy tính tích cực trong học tập.
- Có tính tư duy và tưởng tượng tốt.
II. Chuẩn bị
2.1 Học sinh
- Ôn lại đường tròn ở lớp 9, học bài cũ, làm bài tập về nhà, xem trước bài mới.
- Chuẩn bị đồ dùng học tập: thước kẻ, compa,
2.2 Giáo viên
- Giáo án, đồ dùng dạy học: thước thẳng, bảng phụ, phấn màu,
III. Phương pháp
Sử dụng phương pháp giảng giải, gợi mở - vấn đáp,
IV. Tiến trình giờ dạy
4.1 Ổn định lớp
4.2 Kiểm tra bài cũ
6 trang |
Chia sẻ: oanh_nt | Lượt xem: 942 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án Hình học 10 Tiết 34 Đường Tròn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tieát 34 §4. ÑÖÔØNG TROØN
Tiết 1(mục 1,2)
I. Mục tiêu
1.1 Kiến thức: Giúp học sinh
- Viết được phương trình đường tròn trong một số trường hợp đơn giản.
- Xác định được tâm và bán kính của đường tròn có phương trình dạng
(x - a)2 + (y – b)2 = R2. Biết được khi nào phương trình x2 + y2 - 2ax - 2by + c = 0 là phương trình đường tròn và chỉ ra được tâm, bán kính của đường tròn đó.
- Viết được phương trình tiếp tuyến của đường tròn khi biết tọa độ của tiếp điểm hoặc biết một yếu tố xác định tiếp tuyến đó.
1.2 Kỹ năng
- Viết được phương trình đường tròn: đi qua 3 điểm, biết tâm và bán kính.
- Xác định được tiếp tuyến của đường tròn.
1.3 Thái độ
- Liên hệ được trong thực tế các vấn đề liên quan đến đường tròn.
- Sáng tạo bài toán mới.
- Phát huy tính tích cực trong học tập.
- Có tính tư duy và tưởng tượng tốt.
II. Chuẩn bị
Học sinh
- Ôn lại đường tròn ở lớp 9, học bài cũ, làm bài tập về nhà, xem trước bài mới.
- Chuẩn bị đồ dùng học tập: thước kẻ, compa,…
2.2 Giáo viên
- Giáo án, đồ dùng dạy học: thước thẳng, bảng phụ, phấn màu,…
III. Phương pháp
Sử dụng phương pháp giảng giải, gợi mở - vấn đáp,…
IV. Tiến trình giờ dạy
4.1 Ổn định lớp
4.2 Kiểm tra bài cũ
Câu 1:
a. Em hãy nêu công thức tính khoảng cách giữa hai điểm A(xA; yA) và B(xB; yB)
b. Nêu công thức tính khoảng cách từ điểm Mo(Xo; Yo) đến đường thẳng (d):
ax + by + c = 0
Đáp án
a. AB = (xB - xA)2 + (yB - yA)2
ax0 + by0 + c
a2 + b2
d(M0, r) =
Câu 2: Muốn viết PTTQ của đường thẳng (d) ta cần xác định những yếu tố nào?
Đáp án:
Để viết PTTQ của đường thẳng (d) ta cần :
- Một VTPT: n (a;b)
- Một điểm: M0(x0; y0)Î (d)
PTTQ của (d): a (x – x0) + b (y – y0) = 0
4.3 Vào bài mới
4.3.1 Đặt vấn đề: Các em đã biết phương trình đường thẳng được xác định khi nào vậy phương trình đường tròn cần những yếu tố gì và xác định như thế nào? Để giải đáp vấn đề trên, hôm nay, cô và các em sẽ cùng tìm hiểu bài §4. ÑÖÔØNG TROØN
4.3.2 Nội dung
Thời gian
Hoạt động của giáo viên
Hoạt động của học sinh
Nội dung ghi bảng
Hoạt động 1:
- Ổn định lớp
- Kiểm tra bài cũ
- Giới thiệu nội dung bài mới
- Ồn định trật tự
- Chú ý theo dõi
§4. ÑÖÔØNG TROØN
Hoạt động 2: Gv gọi Hs nhắc lại định nghĩa đường tròn và điều kiện để M(x0 ;y0)(C).
- Hướng dẫn cho Hs tìm ra phương trình đường tròn: phân tích IM=R
(x - a)2 + (y – b)2 = R
(x - a)2 + (y – b)2 = R2 (1)
(1) chính là PTĐT
- GV khẳng định: vậy PTĐT được xác định khi biết tọa độ tâm và bán kính của nó.
- GV cho thực hiện ví dụ 1, hướng dẫn và gọi 2 HS lên bảng.
- Gợi ý Hs nhận xét về tọa độ tâm I của ví dụ 1 mục b (tâm I trùng gốc tọa độ) từ đó suy ra dạng phương trình đường tròn khi tâm trùng gốc tọa độ.
- Gv chốt lại và chuyển qua mục 2
* Chuyển ý : phương trình đường thẳng các em đã học có nhiều dạng vậy PTĐT có dạng nào nữa ? cô cùng cả lớp sang mục 2. nhận dạng PTĐT)
Hoạt động 3:
- Gv hướng dẫn Hs tiếp cận dạng 2 bằng cách: chia lớp thành 2 nhóm:
+ Nhóm 1: triển khai phương trình (x - a)2 + (y – b)2 = R2 (1) về dạng x2 + y2 - 2ax - 2by + c = 0 (2).
+ Nhóm 2: triển khai phương trình x2 + y2 - 2ax - 2by + c = 0 (2) về dạng (x - a)2 + (y – b)2 = R2 (1).
- Gv hướng dẫn Hs rút ra nhận xét (phần * nhận xét).
- Gv nhấn mạnh điều kiện để có PTĐT dạng (2) là: a2 + b2 >c.
- Gv cho Hs thực hiện 2(sgk).
- Gv khẳng định lại và cho Hs thực hiện ? (sgk) đồng thời rút ra nhận xét gì về hệ số của x2 và y2 ?.
Hoạt động 4:
- Gv đưa ra VD3 để minh họa cho phương trình (1) và phương trình(2).
- Gv hướng dẫn và giải cho Hs hiểu. Giới thiệu 2 cách cho Hs:
+ Cách 1: (dùng PTĐT (1)) xác định toạ độ tâm I và bán kính R. Có IA = IB = IC
+ Cách 2: (dùng PTĐT (2)) xác định các hệ số a, b, c. Vì đường tròn đi qua 3 điểm A, B, C nên toạ độ của chúng thoả mãn PTĐT.
- Gv khẳng định lại tùy theo giả thiết của đề bài toán mà ta có thể chọn cách 1 hay cách 2 sao cho ngắn gọn đúng kết quả.
Hoạt động 5:
-Gv củng cố lại kiến thức và nhận xét tiết học. Hướng dẫn các em làm bài tập về nhà.
- Trả lời (đường tròn C(I ;R) là tập hợp các điểm cách cách I một khoảng không đổi bằng R. M(x0;y0)(C)IM=R
- Chú ý nghe giảng và làm theo hướng dẫn của Gv.
- Hs làm VD1: (Hs có thể làm):
( Hs1) a, có tâm A(3;-4), bán kính R = AB =
(-3 – 3)2 + (4+4)2 =10
è PTĐT (x-3)2 + (y+4)2 = 100
( Hs2 ) b, Gọi I là trung điểm của AB suy ra I là tâm đường tròn có tọa độ I (0 ;0), bán kính
R= AB /2 = 5
è PTĐT x2 + y2 = 25
- Hs nhận xét.
- Cả lớp chú ý.
- Hs chú ý nghe giảng và làm theo hướng dẫn của Gv.
- Hs (có thể) trả lời:
+ Khi a2 + b2 < c thì a2 + b2 – c < 0 suy ra tập hợp M là rỗng
+ Khi a2 + b2 = c thì a2 + b2 – c = 0 suy ra tập hợp M là một điểm có tọa độ trùng tâm đường tròn.
- Hs trả lời câu a, b, là PTĐT. Câu c, d, e không là PTĐT và rút ra nhận xét ( phần * Chú ý).
- Hs chú ý nghe giảng và làm VD3.
- Cả lớp chú ý.
- Cả lớp chú ý.
b
a
●
M
y0
x0
x
y
1. Phương trình đường tròn
●
- Phương trình đường tròn tâm I(a,b), bán kính R có dạng:
(x - a)2 + (y – b)2 = R2 (1)
- VD1: cho hai điểm A(3;-4), B(-3;4)
a, Viết TPĐT có tâm A đi qua điểm B.
b, Viết PTĐT có đường kính AB.
O
R
x
y
* Chú ý: PTĐT C(O ; R) có dạng x2 + y2 = R2 ( tâm
O (0;0),bán kính R)
2. Nhận dạng phương trình đường tròn
* Nhận xét:
- PTĐT (x - a)2 +
(y - b)2 = R2 có thể được viết dưới dạng: x2+ y2 - 2ax - 2by + c = 0 trong đó
c= a2 + b2 -R2.
- Ngược lại, phương trình x2+ y2 - 2ax - 2by + c = 0 là phương trình của đường tròn khi và chỉ khi a2 +b2 - c > 0. Khi đó đường tròn có tâm I(a;b) và bán kính
- VD2:( thực hiện ? )
* Chú ý: PTĐT dạng
x2+ y2+2ax+2by+c=0 thì hệ số của x2 và y2 phải bằng nhau.
-VD3: Viết phương trình đường tròn đi qua ba điểm A(-2; -1) B(-1; 4), C(4; 3).
Bài giải:
- Cách 1: gọi I(x; y) và R là tâm và bán kính của đường tròn đi qua 3 điểm A, B, C. Từ điều kiện
IA = IB = IC hay
Khi đó R2 = IA2 = 13. Phương trình đường tròn cần tìm là:
(x - 1)2 + (y - 1)2 = 13
- Cách 2: giả sử PTĐT có dạng x2+ y2 +2ax + 2by + c = 0. Do A, B, C thuộc đường tròn nên ta có hệ pt:
Töø (1) (2) vaø (3) ta suy ra
Thay a = -1, b= -1, c= -11 vào pt trên ta có: phương trình đường tròn cần tìm là:
x2+y2 -2x -2y -11= 0
4.4 Dặn dò
- Các em về xem kỹ lại bài học, các ví dụ, làm các bài tập 21, 23, 24, 25 sgk trang 95
- Chuẩn bị bài để tiết sau học phần 3 phương trình tiếp tuyến của đường tròn.
V. Rút kinh nghiệm:
................................................................................................................................................................................................................................................................................................................................................................................................................................................
File đính kèm:
- bai 4 Duong Tron chuong trinh nang cao.doc