I. Mục tiêu bài dạy:
1.Kiến thức:
Học sinh nắm được định nghĩa đường hypebol và các yếu tố xác định đường hypebol như : tiêu cự, tiêu điểm, tâm sai,.Học sinh viết được phương trình chính tắc của hypebol khi biết các yếu tố xác định đường hypebol. Học sinh thấy được tính chất và chỉ ra được các tiêu điểm, đỉnh, hai đường tiệm cận của hypebol khi biết phương trình chính tắc của hypebol.
2. Kỹ năng:
Có kỹ năng xác định tiêu cự, tiêu điểm, tâm sai, đỉnh, hai đường tiệm cận của hypebol khi biết phương trình chính tắc của hypebol. Ngược lại có kỹ năng lập phương trình chính tắc của hypebol khi biết các yếu tố xác định đường hypebol.
3. Tư duy:
Hiểu được đường hypebol, phương trình chính tắc của hypebol và các yếu tố liên quan như : tiêu cự, tiêu điểm, tâm sai, đỉnh, hai đường tiệm cận của hypebol, .
4.Thái độ:
Rèn luyện tính tư duy logic trong lập luận. Rèn luyện tính cẩn thận, tỉ mỉ và chính xác khi tính toán.
II. Chuẩn bị của giáo viên và học sinh:
Giáo viên: tham khảo tài liệu, đồ dùng dạy học.
Học sinh: dụng cụ học tập, xem trước bài đường hypebol.
III. Phương pháp:
6 trang |
Chia sẻ: oanh_nt | Lượt xem: 1597 | Lượt tải: 5
Bạn đang xem nội dung tài liệu Giáo án Hình học 10 Tiết 42 - 43 Đường Hypebol, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết: 42 - 43 ĐƯỜNG HYPEBOL
Ngày soạn: 22/03/010
I. Mục tiêu bài dạy:
1.Kiến thức:
Học sinh nắm được định nghĩa đường hypebol và các yếu tố xác định đường hypebol như : tiêu cự, tiêu điểm, tâm sai,...Học sinh viết được phương trình chính tắc của hypebol khi biết các yếu tố xác định đường hypebol. Học sinh thấy được tính chất và chỉ ra được các tiêu điểm, đỉnh, hai đường tiệm cận của hypebol khi biết phương trình chính tắc của hypebol.
2. Kỹ năng:
Có kỹ năng xác định tiêu cự, tiêu điểm, tâm sai, đỉnh, hai đường tiệm cận của hypebol khi biết phương trình chính tắc của hypebol. Ngược lại có kỹ năng lập phương trình chính tắc của hypebol khi biết các yếu tố xác định đường hypebol.
3. Tư duy:
Hiểu được đường hypebol, phương trình chính tắc của hypebol và các yếu tố liên quan như : tiêu cự, tiêu điểm, tâm sai, đỉnh, hai đường tiệm cận của hypebol, ...
4.Thái độ:
Rèn luyện tính tư duy logic trong lập luận. Rèn luyện tính cẩn thận, tỉ mỉ và chính xác khi tính toán.
II. Chuẩn bị của giáo viên và học sinh:
Giáo viên: tham khảo tài liệu, đồ dùng dạy học.
Học sinh: dụng cụ học tập, xem trước bài đường hypebol.
III. Phương pháp:
Đàm thoại, gợi mỡ giải quyết vấn đề và kết hợp hoạt động nhóm.
IV. Tiến trình bài dạy:
1. Ổn định lớp, sĩ số:
2 KiÓm tra bµi cò
Phát biểu định nghĩa elip và viết phương trình chính tắc của elip.
3. Tiến hành dạy bài mới:
Hoạt Động của GV
Hoạt Động của học sinh
Ghi bảng
Hoạt động 1
Đường hypebol là tập hợp
các điểm thoả mãn tính chất
M
(H)
F1
F2
gì ?
Định nghĩa đường hypebol.
1.Định nghĩa:
Cho hai điểm cố định F1, F2 có
khoảng cách F1F2 = 2c (c > 0).
Đường hypebol là tập hợp các
điểm M sao cho
(0 < a < c). Hai điểm F1, F2 gọi
là các tiêu điểm của hypebol.
Khoảng cách F1F2 = 2c gọi là
tiêu cự của hypebol.
Hoạt động 2
Chọn hệ toạ độ như thế nào
để lập phương trình chính
tắc hypebol ?
Cho học sinh làm nhóm
. Hãy tính để suy ra
,
Chọn hệ toạ độ.
Làm việc theo nhóm.
Do đó
(do)
Từ đó suy ra
;
2.Phương trình chính tắc hypebol
Cho hypebol (H) như định nghĩa.
Chọn hệ toạ độ Oxy có góc là
trung điểm đoạn thẳng F1F2, trục
Oy là đường trung trực F1F2 và F2
nằm trên tia Ox. Khi đó F1(-c; 0)
F2(c; 0). Từ đó suy ra
và
Các đoạn thẳng MF1, MF2 được
gọi là bán kính qua tiêu của điểm
M.
Đặt b2 = c2 –a2 (do c >a nên b >0)
ta được
Ngược lại nếu điểm M(x;y) thoả
mãn (1) thì và do đó
, tức là
Phương trình (1) gọi là phương
trình chính tắc của hypebol.
Trả lời tâm đối xứng (H) và
trục đối xứng (H).
Gọi tên trục thực, trục ảo, đỉnh, độ dài trục thực, độ dài trục ảo, nhánh, tâm sai, hình chữ nhật cơ sở, hai đường tiệm cận của hypebol.
3.Hình dạng của hypebol
Cho hypebol (H) có phương trình chính tắc
Gốc toạ độ O là tâm đối xứng (H)
Ox, Oy là hai trục đối xứng (H)
Trục Ox gọi là trục thực, trục Oy
gọi là trục ảo. Hai giao điểm của
(H) với trục Ox gọi là hai đỉnh.
Khoảng cách 2a giữa hai đỉnh gọi
là độ dài trục thực, 2b gọi là độ
dài trục ảo.
Mỗi phần (H) nằm một bên trục
ảo gọi là một nhánh của hypebol.
Tỉ số giữa tiêu cự và độ dài trục
thực là tâm sai của hypebol, kí
hiệu là e, tức là chú ý e > 1.
Hình chữ nhật tạo bởi các đường
thẳng gọi là hình
chữ nhật cơ sở của hypebol. Hai
đường thẳng chứa hai đường
chéo của hình chư nhật cơ sở gọi
là hai đường tiệm cận của
hypebol. Phương trình hai đường tiệm cận là
Hoạt động 4
HD: Tìm a, b và c rồi suy ra
các yếu tố cần tìm.
HD: Tìm a, b rồi suy ra
phương trình chính tắc của hypebol
Làm ví dụ 1
a2 = 9, b2 = 4 nên a = 2,
b = 2, c2 = a2 + b2 = 13 từ đó
suy ra các yếu tố cần tìm.
Làm ví dụ 2
c = 5; 2a = 8 nên a = 4
b2 = c2 - a2 = 9. Vậy phương
trình chính tắc của hypebol
(H) là:
Ví dụ 1 Cho hypebol (H):
Hãy xác định toạ độ các đỉnh, các
tiêu điểm và tính tâm sai, độ dài
trục thực, độ dài trục ảo của (H)..
Ví dụ 2 Viết phương trình chính
tắc của hypebol (H) biết nó có
một tiêu điểm là (5; 0) và độ dài
trục thực bằng 8.
4. Củng cố và dặn dò:
Yêu cầu học sinh nhắc lại các khái niệm cơ bản của hypebol.
Ghi nhớ định nghĩa đường hypebol, phương trình chính tắc của hypebol và các yếu tố liên quan như : tiêu cự, tiêu điểm, tâm sai, đỉnh, hai đường tiệm cận của hypebol,...
Nghiên cứu các kiến thức đã học và các ví dụ đã làm.
Trả lời các câu hỏi và làm các bài tập trang 108, 109 sách giáo khoa.
5. Híng dÉn:
BTVN 37,38,39,40,41 SGK
Tiết : 43 ĐƯỜNG HYPEBOL
Ngày soạn: 18/03/09
Ngày dạy : Tuần 33
I. Mục tiêu bài dạy:
1.Kiến thức:
Củng cố định nghĩa đường hypebol và các yếu tố xác định đường hypebol như : tiêu cự, tiêu điểm, tâm sai,...Củng cố cách viết phương trình chính tắc của hypebol khi biết các yếu tố xác định đường hypebol.
2. Kỹ năng:
Rèn kỹ năng lập phương trình chính tắc của hypebol khi biết các yếu tố xác định đường hypebol và ngược lại khi biết phương trình chính tắc của hypebol rèn thêm kỹ năng xác định tiêu cự, tiêu điểm, tâm sai, đỉnh, hai đường tiệm cận của hypebol.
3. Tư duy:
Hiểu sâu về đường hypebol, phương trình chính tắc của hypebol và các yếu tố liên quan như : tiêu cự, tiêu điểm, tâm sai, đỉnh, hai đường tiệm cận của hypebol, ...
4.Thái độ:
Rèn luyện tính tư duy logic trong lập luận. Rèn luyện tính cẩn thận, tỉ mỉ và chính xác khi tính toán.
II. Chuẩn bị của giáo viên và học sinh:
Giáo viên: tham khảo tài liệu, soạn giáo án, đồ dùng dạy học.
Học sinh: dụng cụ học tập, làm bài tập trang 108, 109 sách giáo khoa.
III. Phương pháp:
Hướng dẫn gợi ý giúp học sinh tự giải bài tập và kết hợp hoạt động nhóm.
IV. Tiến trình bài dạy:
1. Ổn định lớp, sĩ số:
2 KiÓm tra bµi cò
Phát biểu định nghĩa hypebol và viết phương trình chính tắc của hypebol.
3. Tiến hành dạy bài mới:
Hoạt Động của GV
Hoạt Động của HS
Ghi bảng
Hoạt động 1
Hướng dẫn trả lời câu hỏi 36
Trả lời câu hỏi 36
Các mệnh đề a), b),d) đúng, mệnh đề c) sai.
Câu hỏi 36 trang 108
Cho hypebol (H) có phương trình chính tắc . Hỏi trong các mệnh đề sau, mệnh đề nào đúng ?
a) Tiêu cự của (H) là 2c, trong đó c2 = a2 + b2
b) (H) có độ dài trục thực bằng 2a, độ dài trục ảo bằng 2b.
c) Phương trình đường tiệm cận của (H) là
d) Tâm sai của (H) là .
Hoạt động 2
Hướng dẫn bài tập 37
Tìm a, b và c rồi suy ra
các yếu tố cần tìm.
Các tiêu điểm F1(-c;0), F2(c;0), độ dài trục thực 2a, trục ảo 2b. Phương trình các đường tiệm cận .
Cho HS làm BT theo nhóm. Thu bài làm của nhóm và nhận xét.
Làm bài tập 37 theo nhóm.
a) Hypebol có a = 3, b = 2, c2 = a2 + b2 = 13 Tiêu điểm Độ dài trục thực 2a = 6, trục ảo 2b = 4. Phương trình các đường tiệm cận .
b) Tương tự câu a
c) x2 – 9y2 = 9
Tương tự câu a
Bài tập 37 trang 109 Tìm toạ độ các tiêu điểm, các đỉnh; độ dài trục thực, trục ảo và phương trình các đường tiệm cận của mỗi hypebol có phương trình sau
c) x2 – 9y2 = 9.
Hoạt động 3
Hướng dẫn bài tập 38
Dựa vào điều kiện hai đường tròn tiếp xúc ngoài và hai đường tròn tiếp xúc trong. Từ đó suy ra MF1 - MF2= hay .
Làm bài tập 38
Gọi M là tâm đường tròn (C’) đi qua F2, tiếp xúc với (C). Ta có: Hai đường tròn tiếp xúc ngoài khi và chỉ khi MF1 = R + MF2. Hai đường tròn tiếp xúc trong khi và chỉ khi MF1 = MF2 – R. Như vậy (C) tiếp xúc (C’) khi và chỉ khi MF1 - MF2= hay . Do đó tập hợp các tâm M của (C’) là một hypebol có hai tiêu điểm F1, F2; độ dài trục thực bằng . Phương trình chính tắc là
Bài tập 38 trang 109 Cho đường tròn (C) tâm F1, bán kính R và một điểm F2 ở ngoài (C). Chứng minh rằng tập hợp tâm các đường tròn đi qua F2, tiếp xúc với (C) là một đường hypebol. Viết phương trình chính tắc của hypebol đó.
Hoạt động 4
Hướng dẫn bài tập 39
Tìm a, b rồi suy ra
phương trình chính tắc của hypebol.
Cho HS làm BT theo nhóm. Thu bài làm của nhóm và nhận xét.
Làm bài tập 39 theo nhóm.
a) c = 5; 2a = 8 nên a = 4
b2 = c2 - a2 = 9. Vậy phương
trình chính tắc của hypebol
(H) là:
b)
Từ giả thiết ta có
Vậy phương trình chính tắc của hypebol (H) là:
c) Từ giả thiết ta có hệ phương trình
Vậy phương trình chính tắc của hypebol (H) là:
Bài tập 39 trang 109 Viết phương trình chính tắc của hypebol (H) trong mỗi trường hợp sau a) (H) có một tiêu điểm là (5;0) và độ dài trục thực bằng 8.
b) (H) có tiêu cự bằng , một đường tiệm cận là
c) (H) có tâm sai và đi qua điểm (;6).
Hoạt động 5
Hướng dẫn bài tập 40
Đưa phương trình các đường tiệm cận về dạng ax + by + c =0.
Dùng công thức tính khoảng cách từ M đến
Tính tích khoảng cách từ M đến 2 đường tiệm cận và rút gọn ta được
không đổi.
Làm bài tập 40
Xét hypebol (H): . Hai đường tiệm cận là
không đổi.
Bài tập 40 trang 109 Chứng minh rằng tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.
Hoạt động 6
Hướng dẫn bài tập 41
Tính theo công thức
Suy ra MF1, MF2 và
Làm bài tập 41
Từ đó suy ra
Vậy
Bài tập 41 trang 108 Trong mặt phẳng toạ độ cho hai điểm , . Chứng minh rằng với mỗi điểm M(x; y) nằm trên đồ thị hàm số , ta đều có ;
Từ đó suy ra .
3. Củng cố và dặn dò:
Nắm vững định nghĩa đường hypebol, phương trình chính tắc của hypebol và các yếu tố liên quan như: tiêu cự, tiêu điểm, tâm sai, đỉnh, hai đường tiệm cận của hypebol, ...
Nghiên cứu các kiến thức đã học và các bài tập đã làm.
Chuẩn bị bài học tiếp theo bài parabol.
File đính kèm:
- Tiết42-43HH10.doc