I. MỤC TIÊU :
- Nắm được đ/n tứ giác, tứ giác lồi, tổng các góc của tứ giác lồi.
- Biết vẽ, gọi tên các yếu tố, biết tính sđ các góc của một tứ giác lồi.
- Biết vận dụng các kiến thức trong bài vào các tình huống thực tiễn đơn giản.
II. CHUẨN BỊ :
1. GV: Các hình vẽ 1;2 ; 3 ; 5(a;d)6(a)9;11/SGK trên bảng phụ.
2. HS: SGK; dụng cụ vẽ hình, ôn tập định lý về tổng 3 góc của tam giác
III. các hoạt động trên lớp :
1) Ổn định: 1’
2) Kiểm tra:
3) Bài mới:
Giới thiệu nội dung nghiên cứu trong chương I
GV giới thiệu nội dung cần nghiên cứu trong chương I
150 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 853 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Hình học 8 năm học 2013 - 2014, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày dạy: 22-8-2011
Chương I : TỨ GIÁC
Tiết 1 - TỨ GIÁC
I. MỤC TIÊU :
Nắm được đ/n tứ giác, tứ giác lồi, tổng các góc của tứ giác lồi.
Biết vẽ, gọi tên các yếu tố, biết tính sđ các góc của một tứ giác lồi.
Biết vận dụng các kiến thức trong bài vào các tình huống thực tiễn đơn giản.
II. CHUẨN BỊ :
1. GV: Các hình vẽ 1;2 ; 3 ; 5(a;d)6(a)9;11/SGK trên bảng phụ.
2. HS: SGK; dụng cụ vẽ hình, ôn tập định lý về tổng 3 góc của tam giác
III. các hoạt động trên lớp :
Ổn định: 1’
Kiểm tra:
Bài mới:
Giới thiệu nội dung nghiên cứu trong chương I
GV giới thiệu nội dung cần nghiên cứu trong chương I
Hoạt động của GV
Hoạt động của HS
HĐ1: Tìm hiểu Đ/n
1. Định nghĩa:
GV : Treo bảng phụ (H1) HS quan sát.
Nhận xét:
Các hình trên đều tạo bởi 4 đoạn thẳng khép kín. Hình 1 là tứ giác, hình 2 không phải là tứ giác.
Tứ giác là hình như thế nào?
GV nhấn mạnh hai ý:
+ Bốn đoạn thẳng khép kín
+ Bất kỳ hai đoạn thẳng nào cũng không cùng nằm trờn một đường thẳng.
GV giới thiệu tờn gọi tứ giác, cỏc yếu tố đỉnh, cạnh, góc.
Y/c HS làm ?1
GV giới thiệu : Tứ giác ABCD ở hình 1a gọi là tứ giác lồi.
GV nêu phần chú ý: Khi nói đến tứ giác mà không chú thích gì thêm, ta hiểu đó là tứ giác lồi.
HS vẽ hình 1a vào vở.
Y/c HS làm ?2
Gọi một số HS trả lời
GV chốt lại cho HS : Tứ giác có 4 đỉnh, 4 cạnh, 4 góc, 2 đường chéo.
So sánh cỏc yếu tố của tứ giác với tam giác.
Hoạt động 4: Tìm hiểu Tổng các góc của một tứ giác
Y/c HS làm ?3
Cõu a : Tổng 3 gúc của tam giác bằng bao nhiêu?
Cõu b: GV hướng dẫn : Kẻ đường chéo AC (hoặc BD), áp dụng đ/lý về tổng 3 góc của tam giác.
HS: Suy ra định lý về tổng các góc của tứ giác.
Củng cố:
HS làm tại lớp các BT 1(H5-a; d; H6a) 4a ; 5
Y/c HS trình bày bài giải chi tiết vào vở.
Gọi 2HS lên bảng trình bày lời giải
1. Định nghĩa:
HS tiếp thu và ghi nhớ
HS quan sát
HS ghi nhớ các nhận xét của GV
HS: Suy ra định nghĩa tứ giác
HS ghi nhớ
*VD: Tứ giác ABCD(hay BCDA)
Đỉnh: các điểm A ; B ;C ;D
Cạnh : các đoạn AB ; BC ; CA ; AD.
b) Tứ giác lồi:
_
D
_
C
_
B
_
A
HS làm ?1
HS rút ra đ/n tứ giác lồi.
HS làm ?2
Một số HS trả lời
HS ghi nhớ
HS so sánh
2. Tổng các góc của một tứ giác
HS làm ?3
Câu a : Tổng 3 gúc của tam giỏc bằng 1800
Câu b:
+ + = 1800
Hay
Định lý : Tổng các góc của một tứ giác bằng 3600
HS trình bày bài giải chi tiết vào vở.
Bài tập 1- Hỡnh 5a
Ta cú
= x = 3600 - (1100 + 1200 + 800 ) = 500
Bài tập 1- H.6a: x + x + 650 + 950 = 3600
x = (3600 - 650 - 950 ) : 2 = 1000
Hướng dẫn học ở nhà
HD Bài tập 4a
B1: Dựng tam giác ABC biết AB = 1,5 cm ; BC = 2 cm; CA = 3 cm
B2: Dựng tam giác ACD biết AC = 3 cm ; CD = 3,5cm; DA = 3 cm
GV hướng dẫn HS tính tổng các góc ngoài của tam giác.
Học bài theo vở ghi và SGK
Làm các bài tập còn lại trong SGK. Bài 4; 8 ; 10- SBT
Xem bài: Hình thang: ôn lại tính chất hai đường thẳng song song
Ngày dạy: 19-8-2011
TiÕt 2 - HÌNH THANG
I. MỤC TIÊU :
Nắm được định nghiã hình thang, hình thang vuông, các yếu tố của hình thang Biết cách chứng minh một tứ giác là hình thang, hình thang vuông.
Biết vẽ hình thang, hình thang vuông . Biết tính sđ các góc của hình thang , của hình thang vuông.
Biết sử dụng dụng cụ để kiểm tra 1 tứ giác là hình thang
Biết linh hoạt khi nhận dạng hình thang ở nhứng vị trí khác nhau ( 2 đáy nằm ngang, hai đáy không nằm ngang) và các dạng đặc biệt ( 2 cạnh bên song song, 2 đáy bằng nhau)
II. CHUẨN BỊ :
GV: Các hình vẽ 7a; 13;15 , 16 , 17 trên bảng phụ, thước, ê ke
HS: Thước, ê ke
III. các hoạt động trên lớp :
Ổn định: 1’
Kiểm tra:
Bài mới:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: ổn định lớp
Kiểm tra sỹ số HS
Ổn định tổ chức lớp
Hoạt động 2: Bài cũ
Nêu định nghĩa về tứ giác, tổng các góc trong một tứ giác?
Hoạt động 3: Tìm hiểu định nghĩa
GV vẽ hình 13
hai cạnh AB và CD của tứ giác ABCD có gì đặc biệt ?
GV : Tứ giác như thế gọi là hình thang
Vậy có thể đ/n hình thang như thế nào?
GV giới thiệu các khái niệm đáy (đáy lớn, đáy nhỏ), cạnh bên, đường cao .
Tứ giác ABCD là hình thang khi nào?
Y/c HS làm ?1
GV Treo b¶ng phô h×nh vẽ 15 a;b;c
Tìm ra các tứ giác là hình thang
Chỉ rõ đâu là đáy, cạnh bên của hình thang?
Y/c HS làm ?2 theo đơn vị nhóm
Gọi đại diện hai nhóm trả lời
Từ đó ta có nhận xét gì?
*Nhận xét (SGK).
Hoạt động 4: Tìm hiểu về hình thang vuông
Y/c HS quan sát hình vẽ 18 và tính góc D
Tứ giác ABCD trên H-18 là hình thang vuông
Vậy: thế nào là hình thang vuông
GV: Hình thang vuông có 2 góc vuông
Hoạt động 5:Củng cố, luyện tập
1)Bài tập 6-tr.70-SGK : GV hướng dẫn HS sử dụng thước và êke kiểm tra xem 2 đường thẳng có song song hay không.
2)Bài 9-tr.71-SGK
AB = BC ta suy ra điều gì?
AC là phân giác của góc A ta có điều gì?
Kết hợp các điều trên ta có kết luận gì?
Hoạt động 6: Hướng dẫn, dặn dò
Học bài: Nắm chắc nội dung bài học
Làm BT 7 ;8; 10 trang 71- SGK;17; 18 tr.62-SBT
Xem bài Hình thang cân
HS báo cáo sỹ số
HS Ổn định tổ chức lớp
Một HS lên bảng trình bày
1/ Định nghĩa :
HS vẽ hình vào vở
AB // CD vì hai góc A và D bù nhau.
HS ghi nhớ
Hình thang là tứ giác có 2 cạnh đối song song.
HS ghi nhớ các K/n
Tứ giác ABCD là hình thang
ó AB // CD
Hai đáy : AB và CD
Cạnh bên : AC và BD
Đường cao : AH ( AH ^ CD)
HS làm ?1
HS quan sát các hình vẽ
Hình thang EFGH (= 1800 nên EH // FG)
Hình thang ABCD ( BC // AD vì hai góc A và B đồng vị bằng nhau)
HS làm ?2;theo nhóm
a) ΔABC =ΔCDA ( g.c.g) => AB = CD và
AD = BC
b)ΔABC = Δ CDA ( c.g.c) => AD = BC
và => AD //BC
HS nêu nhận xét
HS đọc nhận xét trong SGK
2. Hình thang vuông
HS quan sát hình vẽ 18 và tính góc D
HS ghi nhớ
Hình thang vuông là hình thang có một góc vuông
HS thực hành .
Các tứ giác là hình thang: ABCD ; MNIK
Bài7: AB = BC
Δ ABC cân Mà BC // AD ABCD là hình thang.
HS ghi nhớ để học tốt bài học
Ghi nhớ các bài tập cần làm ở nhà
Ghi nhớ để chuẩn bị tốt cho tiết học sau
Tuần 2
Ngày soạn: 20-8-2010
Ngày dạy: 24-8-2010
TIẾT 3 - HÌNH THANG CÂN
I. Mục tiêu:
Nắm được đ/n; t/c; các dấu hiệu nhận biết hình thang cân
Biết vẽ hình thang cân, biết sử dụng đ/n và các t/c của hình thang cân trong tính toán và chứng minh , biết chứng minh 1 tứ giác là hình thang cân.
Rèn luyện tính chính xác và cách lập luận c/m hình học .
II. CHUẨN BỊ :
Thước chia khoảng, thước đo góc, giấy kẻ ô vuông
Hình vẽ 24; 27 trên bảng phụ
III. các hoạt động trên lớp :
Ổn định: 1’
Kiểm tra:
Bài mới:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số lớp
Ổn định tổ chức lớp
Hoạt động 2: Kiểm tra bài cũ
2 HS đồng thời lên bảng
HS1: Giải BT 7- Hình 21a
HS2: Giải BT 8-tr.71-
GV cho HS nhận xét và đánh giá bài làm của 2HS
Hoạt động 3: Tìm hiểu định nghĩa
GV đặt vấn đề : Ngoài dạng đặc biệt của hình thang là hình thang vuông, 1 dạng khác thường gặp là hình thang cân.
GV vẽ một hình thang có 2 góc kề 1 đáy bằng nhau cho HS quan sát
Hình thang vừa vẽ gọi là Hình thang cân
Vậy: thế nào là hình thang cân?
Tứ giác ABCD là hình thang cân (đáy AB và CD ) khi nào?
Chú ý : ( SGK)
Bài tập ?2:
Y/c HS chỉ ra các hình thang cân trong H.24- SGK
tính các góc còn lại
Hai góc đối của hình thang cân có quan hệ gì?
GV nhấn mạnh : Muốn c/m tứ giác là HTC chỉ cần c/m gì?
Hoạt động 4: Tìm hiểu tính chất của hình thangg cân
a) Định lý 1(T/c về cạnh) :
Đo 2 cạnh bên của hình thang cân và rút ra kết luận
A
B
C
D
GV nêu định lí
GT : ABCD là hình thang cân (AB // CD)
KL: AD = BC
GV hướng dẫn HS c/m
Nếu 2 đường thẳng chứa 2 cạnh bên cắt nhau (tại O) :
B1: c/m OA = OB và OD = OC
Ý
Δ OAB cân Δ ODC cân
B2: Lập luận suy ra AD = BC
Nếu 2 cạnh bên song song thì sao?
GV nêu chú ý : Hình thang có 2 cạnh bên bằng nhau chưa chắc là HTC
b)Định lý 2 ( T/c về đường chéo)
Quan sát hình thang cân, vẽ 2 đường chéo, đo và dự đoán xem 2 đường chéo có bằng nhau hay không ?
Hãy phát biểu thành định lí ?
Trong HTC, 2 đường chéo bằng nhau.
GT: ABCD là hình thang cân (AB//CD)
KL : AC = BD
GV: Để c/m AC = BD cần c/m điều gì ?
Hãy c/m điều đó
GV đặt v/đ: Hình thang có 2 đường chéo bằng nhau có phải hình thang cân hay không?
Hoạt động 5: Tìm hiểu dấu hiệu nhận biết
Y/c HS làm ?3
GV lưu ý cho HS : 2 đoạn AC và BD phải cắt nhau.
Hãy phát biểu kết quả trên thành định lí
Định lý 3 : Hình thang có 2 đường chéo bằng nhau là HTC
Qua định nghĩa và các định lý; muốn c/m một tứ giác là hình thang cân ta làm thế nào ?
Dấu hiệu nhận biết :( SGK)
- §Þnh nghÜa
- §Þnh lý3
Hoạt động 6: Củng cố
Bài tập 11/ 74/SGK: GV chuẩn bị hình vẽ trên lưới ô vuông.
Bài tập 13/ 74/ SGK
Δ ADC = Δ BCD ? vì sao ?
Từ đó suy ra điều gì ?
Hoạt động 7: Hướng dẫn, dặn dò
Học bài: Nắm chắc định nghĩa, tính chất, dấu hiệu nhận biết hình thang cân
Làm các bài tập còn lại trang 75 SGK
Chuẩn bị tốt cho tiết sau luyện tập
HS báo cáo sỹ số
HS ổn định tổ chức
2 HS đồng thời lên bảng giải
HS1: bài 7 – H.21a
HS2: Giải BT 8-tr.71-
HS khác nhận xét
1/ Định nghĩa
HS vẽ hình theo GV, quan sát hình vẽ
HS phát biểu thành định nghĩa
Tứ giác ABCD là hình
thang cân(đáy AB và CD )
HS đọc phần chú ý
HS làm ?2
HS chỉ ra các hình thang cân trong H.24- SGK
HS tính các góc còn lại và trả lời
Hai góc đối của hình thang cân thì bù nhau
Muốn c/m tứ giác là HTC chỉ cần c/m tứ giác là hình thang có 2 góc kề 1 đáy bằng nhau.
2/ Tính chất :
a) Định lý 1(T/c về cạnh) :
HS vẽ hình vào vở
HS đo hai cạnh bên của HTC để phát hiện định lý.
HS ghi GT; KL của định lý.
HS c/m định lí theo hướng dẫn của GV
A
B
C
D
Nếu 2 cạnh bên song song : Hình thang có 2 cạnh bên song song thì 2 cạnh bên bằng nhau (Nhận xét ở bài 2- Hình thang
HS ghi nhớ
Định lý 2
O
A 2 2 B
1 1
C
D
A
B
CB
DB
HS vẽ, đo và rút ra kết luận
HS: Rút ra định lý về 2 đường chéo của hình thang cân.
Để c/m AC = BD cần c/m Δ ADC = Δ BCD
HS c/m
HS dự đoán
3. Dấu hiệu nhận biết
HS làm BT ?3 ( Sử dụng com pa)
Kết quả đo :
Dự đoán: ABCD là hình thang cân
HS phát biểu
C/m®Þnh lý 3(bt18 sgk)
HS nªu 2 dấu hiệu nhận biết hình thang cân.
HS ghi nhớ các dấu hiệu nhận biết hình thang cân
HS thực hiện : Áp dụng định lý Pi-ta-go
ĐS: AD = BC =
A
B
C
D
E
Δ ADC = Δ BCD
( c.c.c) Δ ECD cân
EC = ED
Lại có : AE = AC – EC , BE = BD - ED
Suy ra EA = EB
HS ghi nhớ để học tốt bài học
Ghi nhớ các bài tập cần làm
Ghi nhớ nội dung cần chuẩn bị cho tiết sau
Ngày dạy: 27-8-2011
TIẾT 4 - LUYỆN TẬP
I. MỤC TIÊU:
Chứng minh 1 tứ giác là hình thang cân
Tính sđ các góc của hình thang cân
Áp dụng tính chất của hình thang cân để c/m các đoạn thẳng bằng nhau.
II. CHUẨN BỊ:
GV: Đọc kỹ SGK, SGV, các đồ dùng dạy học
HS: Làm các bài tập đã ra về nhà, chuẩn bị đầy đủ các đồ dùng học tập
III. các hoạt động trên lớp :
Ổn định: 1’
Kiểm tra:
Bài mới:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số HS
Ổn định tổ chức lớp
Hoạt động 2: kiểm tra bài cũ
HS1: Phát biểu định nghĩa hình thang cân. Phát biểu dấu hiệu nhận biết hình thang cân.
HS2:Giải BT 15-tr.75-SGK
Hoạt động 3: Giải bài tập
1/ Bài tập 18-tr.75-SGK
GT: AB // CD ; AC = BD
KL: ABCD là hình thang cân
Kẻ đường thẳng BE qua B và song song với AC
Tứ giác ABEC có gì đặc biệt?
Suy ra 2 cạnh bên có độ dài quan hệ với nhau như thế nào ?
Muốn c/m Δ BDE cân ta làm thế nào?
Hãy c/m BD = BE
Δ ACD = Δ BDC ?
Từ AC // BE suy ra điều gì?
Δ BDE cân tại B nên ta có cặp góc nào bằng nhau?
Vậy Δ ACD = Δ BDC theo t/h nào?
Để C/m ABCD là hình thang cân ta cần c/m gì?
Hãy c/m điều đó
2/ Bài tập 33 trang 64-SBT
GT: ABCD là hình thang cân ;
BD ^ BC ; BC = 3 cm
KL : Tính chu vi hình thang ABCD
GV hướng dẫn HS vẽ hình :
Vẽ ΔBDC vuông có BC = 3 cm
Vẽ BA = 3 cm và BA // DC
AB // CD nên ta có cặp góc nào bằng nhau?
Mà ( GT) Nên suy ra điều gì?
ΔBCD vuông ta có kl gì?
Mà Suy ra ?
ΔBCD vuông có = 300 nên DC= ? BC
Chu vi hình thang ABCD tính như thế nào?
Hoạt động 4: Hướng dẫn, dặn dò
Hướng dẫn bài 17: Kẻ AH CD, BKCD, C/ DH = CK
Làm bài tập: bài 16 – tr 75. SGK, bài 30 ; 32-tr.63-SBT
Chuẩn bị tiết sau:
Đọc trước bài: Đường trung bình của tam giác…
HS báo cáo sỹ số
HS ổn định tổ chức
2HS lên bảng trình bày
HS đọc kỹ đề và vẽ hình , ghi GT ,KL
a)Chứng minh
Δ BDE cân
A
B
C
D
E
Hình thang ABEC ( AB//CE) có AC // BE nên AC = BE
Mà AC = BD nên BD = BE => Δ BDE cân
b) Δ ACD = Δ BDC
AC // BE suy ra
Δ BDE cân tại B nên
Vậy
Δ ACD và Δ BDC có ; AC = BD ; cạnh DC chung nên Δ ACD = Δ BDC
c)C/m ABCD là hình thang cân ta cần C/m
Δ ACD = Δ BDC suy ra
Lại có AB // CD nên ABCD là hình thang cân
1
2
1
A
GV
B
GV
C
GV
D
GV
HS ghi Gt, Kl
HS vẽ hình :
Vẽ ΔBDC vuông có BC = 3 cm
Vẽ BA = 3 cm và BA // DC
AB // CD nên ( so le trong)
Mà ( GT)
Nên suy ra ΔABD cân
=> AB = AD = BC = 3cm
ΔBCD vuông =>= 900
Mà = 900 = 300
ΔBCD vuông có = 300
nên DC= 2 BC = 6cm
Chu vi hình thang ABCD là
3 + 3 + 3 + 6 = 15 cm
HS theo dõi GV hướng dẫn để về nhà tiếp tục giải
Ghi nhớ các bài tập cần làm ở nhà và bài học cần chuẩn bị cho tiết học sau
Ngày dạy: 31-8-2011
TIẾT 5 : ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC
I. MỤC TIÊU:
Nắm được định nghĩa và các định lý 1;2 về đường trung bình của tam giác.
Biết vận dụng các định lý để tính độ dài, chứng minh 2 đoạn thẳng bằng nhau, hai đường thẳng song song.
Rèn luyện cách lập luận trong chứng minh định lý và vận dụng định lý đã học vào các bài toán thực tế.
II. CHUẨN BỊ:
GV: Đọc kỹ SGK, SGV, dụng cụ dạy học
HS: Đọc trước nội dung bài học, đồ dùng học tập
III. c¸c ho¹t ®éng trªn líp :
Ổn định: 1’
Kiểm tra:
Bài mới:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số lớp
Ổn định tổ chức lớp
Hoạt động 2: Kiểm tra bài cũ
* Phát biểu tính chất hình thang cân.
* Giải bài tập 30 trang 63- SBT
GV đặt vấn đề vào bài
Tìm hiểu về đường trung bình của tam giác
Hoạt động 3: Tìm hiểu định lí 1
Y/c HS làm ?1:
Cho Δ ABC ; DE đi qua trung điểm cạnh AB(thứ nhất), song song với cạnh BC (thứ hai)
Phát biểu dự đoán trên thành 1 định lý
GV gới thiệu định lý 1
GV hướng dẫn HS c/m định lý
Để c/m : AE = EC ta có thể c/m hai tam giác bằng nhau.
GV: Ta sẽ tạo 1 tam giác bằng Δ ADE bằng cách nào?
Ta cần c/m Δ ADE bằng tam giác nào?
Hãy c/m Δ ADE = Δ ECF ?
GV: Đoạn DE gọi là đường trung bình của Δ ABC
Vậy thế nào là đường trung bình của tam giác?
Căn cứ vào đ/n , xem 1 tam giác có mấy đường trung bình ? Các đường trung bình ấy có cắt nhau tại 1 điểm hay không ?
Y/c HS làm ?2
Cho HS vẽ hình, đo, so sánh và trả lời
Từ kết quả ?2 dự đoán tính chất đường trung bình của tam giác.
Gọi HS đọc nội dung định lí 2 – SGK
GV vẽ hình,ghi GT, KL của định lí 2 lên bảng
GV cùng HS c/m định lí 2
Y/c HS làm ?3
Gọi 1HS trả lời kết quả
Hoạt động 4: Củng cố, luyện tập
Bài học hôm nay cần nắm chắc kiến thức nào?
1)Bài tập 20 tr79-SGK - GV đưa hình vẽ 41 trên bảng phụ.
Cho HS tính và trả lời
2) Bài tập 21 tr79 - SGK - GV đưa hình vẽ trên bảng phụ, cho HS thực hiện và trả lời
Hoạt động 5: Dặn dò
Làm BT 22 – Tr 80.SGK
Học bài : học thuộc đ/n, tc trong bài
Xem bài : Đường trung bình của hình thang
HS báo cáo sỹ số
HS ổn định tổ chức
HS lên bảng phát biểu và giải bài tập
1/ Đường trung bình của tam giác
HS tiếp thu vấn đề cần nghiên cứu
a) định lí 1
HS làm ?1:
1HS trả lời dự đoán
A
B
C
D
E
F
Dự đoán E là trung điểm của cạnh AC (thứ ba)
HS phát biểu
HS ghi GT; KL của định lý 1
GT : Δ ABC ;
DA = DB ; DE//BC
KL: AE = EC
HS suy nghĩ và
trả lời :Kẻ EF // AB
C/m: Δ ADE = Δ ECF
AD = EF ( cùng bằng BD ); (đồng vị); ( cùng bằng )
Vậy : Δ ADE = Δ ECF => AE = CE
HS tiếp cận k/n
HS phát biểu
1HS đọc đ/n trong SGK
* Định nghĩa : ( Học SGK)
D là trung điểm AB ; E là trung điểm AC DE là đường trung bình của ΔABC
HS vẽ hình và trả lời
Đường trung bình của tam giác không cắt nhau tại 1 điểm.
HS làm ?2: Vẽ hình, kiểm tra và trả lời kết quả: ; DE = BC
HS dựa trên kết quả của ?2 để phát biểu thành tính chất
HS đọc nội dung định lí 2 – SGK
b) định lí 2 (SGK)
GT: Δ ABC;
AD = BD; AE = EC
KL: DE // BC ;
DE = BC
HS làm ?3
BC = 2 DE = 2.50 = 100 (m)
A
B
C
D
E
F
HS trả lời để ghi nhớ nội dung chính của bài
IK // BC .Lại có
KA = KC nên IA = IB = 10 cm = x
HS quan sát, thực hiện rồi trả lời
CD là đường trung bình của tam giác OAB => AB = 2 CD = 2.3 = 6 cm
HS ghi nhớ bài tập cần làm
Ghi nhớ để học tốt bài học
Ghi nhớ bài cần chuẩn bị cho tiết học sau
Ngày soạn : 29-8-2010
Ngày dạy : 3-9-2010
TIẾT 6 : ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG
I.MỤC TIÊU:
- Nắm được định nghĩa và các định lý 3 ;4 về đường trung bình của hình thang
- Biết vận dụng định lý để tính độ dài, chứng minh 2 đoạn thẳng bằng nhau.
- Rèn luyện cách lập luận trong chứng minh định lý và vận dụng định lý để làm bài tập.
II.CHUẨN BỊ:
Hình 43 ; 44 ; 37; 40; 44 trên bảng phụ
III. các hoạt động trên lớp :
Ổn định: 1’
Kiểm tra:
Bài mới:
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số lớp
Ổn định tổ chức lớp
Hoạt động 2: Kiểm tra bài cũ
A
B
C
D
E
I
M
Phát biểu đ/n và tính chất đường trung bình của tam giác.
Giải bài tập 22-tr.80.SGK - (GV chuẩn bị hình vẽ trên bảng phụ )
Hoạt động 3:
Tìm hiểu Đường trung bình của hình thang
Y/c HS làm ?4 GV đưa hình vẽ 37 trên bảng phụ
Gọi HS lên bảng thực hiện và trả lời ?4
Từ đó ta có kết luận gì?
Hãy c/m bài toán trong ?4
Áp dụng định lí nào để c/m I là trung điểm của AC
C/m F là trung điểm của BC?
Hãy phát biểu kết luận của ?4 thành một định lí
GV giới thiệu định lí 3
Hãy vẽ hình và ghi GT, KL của định lí
GV: Ta gọi EF là đường rtung bình của hình thang ABCD
Đường trung bình của hình thang là gì?
Hình thang có mấy đường trung bình?
Từ đ/n đường trung bình của hình thang, t/c đường trung bình của tam giác, hãy dự đoán t/c đường trung bình của hình thang ?
Hãy c/m bài toán ( GV đọc đề toán)
Hướng dẫn HS ghi TG, KL của bài toán
GV gợi ý HS chừng minh: Để c/m EF // DC ta tạo ra một tam giác có E ; F là trung điểm 2 cạnh và DC nằm trên cạnh thứ ba. Đó là ΔADK (K là giao điểm của AF và DC)
B1: C/m ΔABF = ΔKCF?
B2: Lập luận để suy ra EF // DC và
EF = (AB + DC)
Dự đoán EF bằng bao nhiêu phần DK
Để c/m EF = ( AB + DC) nên ta sẽ c/m 2 đoạn nào bằng nhau?
Hãy c/m AB = CK
EF có tính chất gì? Từ đó suy ra điều gì?
Từ bài toán trên. Hãy phát biểu thành một kết luận dưới dạng một định lí
GV giới thiệu và nhấn mạnh định lí
Y/c HS làm ?5
GV đưa hình vẽ 40 trên bảng .
Hướng dẫn :
B1: Chứng tỏ BE là đường trung bình của hình
A
B
C
24
D
E
H
32
x
thang ADHC
B2:Tính x
Hoạt động 4: Củng cố, Luyện tập
Bài học hôm nay cần nắm vững kiến thức gì?
Làm bài tập 24- Tr 80. SGK
Kẻ AH; CM ; BK vuông góc với xy
Hình thang
ABCD có
AC = CB;
A
B
C
M
H
K
x
y
12
20
CM //AH //BK. Nên suy ra điều gì?
Hãy C/m điều đó
Hoạt động 5: Hướng dẫn, dặn dò
Học bài: Nắm chắc kiến thức bài học: Các định lí, định nghĩa đã học về đường trung bình của Tam giác, Hình thang
Làm BT 23; 25 ; 26 trang 80 SGK
Chuẩn bị cho tiết sau: Chuẩn bị đồ dùng, kiến thức bài học để tiết sau luyện tập
HS báo cáo sỹ số
HS ổn định tổ chức
HS lên bảng trả lời và giải bài tập
EM là đường trung bình của ΔBDC nên EM // DC
DE = DA ; DI // EM nên IA = IM
2/ Đường trung bình của hình thang
HS lên bảng thực hiện và trả lời
IA = IC, FB = FC
HS phát biểu
HS: áp dụng đl 1- đường trung bình của tam giác: Vì EI // CD mà EA = ED nên IA = IC
FI // AB Mà IA = IC nên fb = fc hay F là trung điểm BC
HS phát biểu
a) Định lý 3 ( Học SGK)
HS vẽ hình, ghi GT ; KL của định lý .
HS phát biểu định nghĩa
b) Định nghĩa : Đường trung bình của hình thang là đoạn thẳng nối trung điểm 2 cạnh bên của hình thang.
Hình thang có một đường trung bình
HS dự đoán về tính chất đường trung bình của hình thang
HS ghi đề, viết GT, KL và vẽ hình
EF = DK ;
AB = CK
ΔABF = Δ KCF (; BF = CF ;
) => AB = CK và AF = FK
EF là đường trung bình của tam giác ADK suy ra EF // DC // AB và EF = DK = (DC + CK ) = ( DC + AB )
HS phát biểu
c) Định lý 4 ( t/c đường trung bình của hình thang)
Đường TB của hình thang thì song song với 2 đáy và bằng nửa tổng 2 đáy.
HS làm ?5
HS thực hiện:
BE ^ DH ; AD ^ DH; CH ^ DH suy ra
BE // AD // HC
Hình thang ADHC có BE // AD ; BA=BC nên ED = EH
EB là đường trung bình của hình thang ADHC nên EB = ( AD + HC)
32 = ( 24+x) x = 40 m
HS phát biểu để củng cố bài học
HS tiếp cận đề bài
HS C/m:
Kẻ AH; CM ; BK vuông góc với xy.
Hình thang ABKH có AC = CB; CM //AH // BK
Nên MH = MK và CM là đường trung bình
CM = ½( AH + BK) = ½( 12 + 20) = 16 (cm)
HS ghi nhớ để học tốt kiến thức bài học
Ghi nhớ các bài tập cần làm
Ghi nhớ công việc cần chuẩn bị cho tiết sau
Ngày dạy: 7-9-2011
TIẾT 7 - LUYỆN TẬP
I. MỤC TIÊU:
Luyện tập áp dụng tính chất đường trung bình của hình thang để tính độ dài đoạn thẳng.
Áp dụng tính chất đường trung bình của hình thang để chứng minh 2 đoạn thẳng bằng nhau.
Tiếp tục rèn luyện lập luận chứng minh.
II.CHUẨN BỊ:
Các hình vẽ trên bảng phụ : 44 ; 45
III. các hoạt động trên lớp :
Ổn định: 1’
Kiểm tra:
Bài mới:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số lớp
Ổn định tổ chức lớp
Hoạt động 2: Kiểm tra bài cũ
Phát biểu đ/n và tính chất đường trung bình của tam giác.
Giải bài tập 25 - tr.80.SGK
Phát biểu đ/n và tính chất đường trung bình của hình thang.
Giải bài tập 26 - tr.80.SGK
Hoạt động 3: Tổ chức luyện tập
1. Giải bài tập:
Cho BD, CE là hai trung tuyến của ΔABC
cắt nhau tại G. Gọi I, K lần lượt là trung điểm của GB, GC
So sánh: DE + IK với BC, EI + DK với GA
Để So sánh: DE + IK với BC ta cần làm gì?
Từ BD, CE là trung tuyến ta suy ra điều gì?
DE có tính chất gì?
IK có tính chất gì?
Hãy so sánh EI + DK với GA
2. Bµi tËp 28-tr. 80-SGK
Từ giả thiết suy ra đoạn thẳng EF là đường gì của hình thang ABCD ?
Suy ra vị trí tương đối của EF và DC
Y/c HS thảo luận theo nhóm chứng minh
AK = KC
Tương tự c/m BI = ID
EI có tính chất gì? Tính EI
Tương tự hãy tính KF
EF có tính chất gì? Hãy tính EF ?
So sánh IK và ( CD - AB) ?
GV: Đoạn nối 2 trung điểm của 2 đường chéo hình thang có tính chất gì?
Hoạt động 4: Củng cố, hướng dẫn
Học bài: Nắm chắc cỏc kiến thức về đường trung bỡnh của tam giỏc, hỡnh thang và cỏch vận dụng vào bài toỏncụ thể
Làm các bài tập : 27-tr.80-SGK
HS khá giỏi làm thêm các bài 39 đến 44- SBT toán ( Tập I )
Xem bài dựng hình bằng thước và compa
Xem lại các bài toán dựng hình cơ bản ( Lớp 7)Mang theo thước thẳng, êke, compa, thước đo góc
HS báo cáo sỹ số
HS ổn định tổ chức
HS1: Phát biểu đ/n và tính chất đường trung bình của tam giác.
Giải bài tập 25 - tr.80.SGK
HS2: Phát biểu đ/n và tính chất đường trung bình của hình thang.
Giải bài tập 26 - tr.80.SGK
HS ghi đề
Vẽ hình bài toán
HS phát biểu
D, E là trung điểm của AB và AC nên DE là đường Tb của ΔABC DE = BC
Tương tự IK = BC
DE + IK = BC + BC = BC
Chứng minh tương tự ta có:
EI + DK = GA + GA = GA
A
B
D
C
E
I
F
K
HS đọc kỹ đề và vẽ hình, thể hiện trên hình vẽ các quy ước ký hiệu 2 đoạn thẳng bằng nhau.
EF là đường trung bình của hình thang ?
EF // DC
HS thảo luận theo nhóm chứng minh
AK = KC
a) Chứng minh AK = KC; BI = ID
EF là đường trung bình của hình thang ABCD nên EF // DC
ΔADC có EA = ED ; EK // DC nên AK=KC
ΔBDC có FB = FC ; IF // DC nên ID=IB.
b) EI là đường trung bình của Δ ABD nên
EI = AB = 3 (cm)
KF = AB = 3(cm)
EF là đường trung bình của hình thang ABCD nên EF = 1/2 (AB + CD) = 8 cm
IK = EF - EI - KF = 2 cm
IK = ( CD - AB) = 2 cm
Đoạn nối 2 trung điểm của 2 đường chéo hình thang song song với 2 đáy và bằng nửa hiệu độ dài 2 đáy.
Ngày dạy : 10-9-2011
Tiết 8 dựng hình bằng thước và compa
Dựng hình thang
I. Mục tiêu :
Biết dùng thước và compa để dựng hình (chủ yếu là hình thang) theo các yếu tố đã cho bằng số và biết trình bày 2 phần cách dựng và chứng minh.
Rèn luyện tính cẩn thận, chính xáckhi sử dụng dụng cụ , rèn khả năng suy luận khi c/m. Có ý thức vận dụng dựng hình vào thực tế.
II. CHUẩN Bị :
- Dụng cụ dựng hình : Thước thẳng, thước đo góc, compa
- Ôn tập các bài toán dựng hình cơ bản ở lớp 6, lớp 7.
III. các hoạt động trên lớp :
Ổn định: 1’
Kiểm tra:
Bài mới:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số lớp
Ổn định tổ chức lớp
Hoạt động 2: Kiểm tra bài cũ
GV kiểm tra dụng cụ dựng hình của HS
Hoạt động 3: Tìm hiểu Bài toán dựng hình
GV giới thiệu thế nào là bài toán dựng hình : Là bài toán vẽ hình mà chỉ sử dụng 2 dụng cụ là thước và compa
GV giới thiệu tác dụng của thước và co
File đính kèm:
- Giao an Hinh 8 CN.doc