A-MỤC TIÊU
ã HS nắm được Đ/N tứ giác, tứ giác lồi, T/C tổng các góc trong của một tứ giác lồi.
ã HS biết vẽ, biết gọi tên các yếu tố, biết tính số đo các góc của một tứ giác lồi.
ã HS biết vận dụng các kiến thức trong bài vào các tình huống thực tế đơn giản.
B- CHUẨN BỊ CỦA GV VÀ HS
ã GV: SGK, thước thẳng, bảng phụ,giấy trong, đèn chiếu.
ã HS: SGK, thước thẳng.
C- TIẾN TRÌNH DẠY- HỌC
44 trang |
Chia sẻ: oanh_nt | Lượt xem: 995 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Hình học 8 từ tiết 1 đến tiết 19 năm học 2008- 2009, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ChươngI
Tiết 1 Tứ giác
A-Mục tiêu
HS nắm được Đ/N tứ giác, tứ giác lồi, T/C tổng các góc trong của một tứ giác lồi.
HS biết vẽ, biết gọi tên các yếu tố, biết tính số đo các góc của một tứ giác lồi.
HS biết vận dụng các kiến thức trong bài vào các tình huống thực tế đơn giản.
B- Chuẩn bị của GV và HS
GV: SGK, thước thẳng, bảng phụ,giấy trong, đèn chiếu.
HS: SGK, thước thẳng.
C- Tiến trình dạy- học
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1
Giới thiệu chương 1 (3 phút)
GV: Học hết chương trình toán lớp 7 các em biết được những nội dung cơ bản về tam giác. Lên lớp 8, sẽ học tiếp về tứ giác, đa giác.
GV: Yêu cầu HS mở phần mục lục tr. 135 đọc nội dung hình học chương 1.
HS nghe GV đặt vấn đề.
HS: Đọc nội dung phần chương 1.
Hoạt động 2
1. Định nghĩa (20 phút)
GV: Trong mỗi hình dưới đây gồm mấy đoạn thẳng? Đọc tên các đoạn thẳng ở mỗi hình?( Đề bài và hình vẽ đưa lên bảng phụ)
GV: Trong những hình vẽ bên, hình nào thoả mãn t/c:
Hình tạo bởi 4 đoạn thẳng?
Bất kì 2 đoạn nào cũng không cùng nằm trên một đường thẳng?
GV: Một hình thoả mãn t/c a và b, đồng thời “khép kín” gọi là tứ giác.
Vậy tứ giác là gì?
GV: Gọi vài h/s đọc đ/n tứ giác.
GV: Giới thiệu tứ giác ABCD còn được gọi là tứ giác BCDA; BADC vv
-Các điểm A,B,C,D gọi là các đỉnh.
-Các đoạn thẳng AB;BC;CD;DA gọi là các cạnh.
GV: Mỗi em hãy vẽ hai tứ giác vào vở và tự đặt tên? Gọi một h/s khác lên bảng vẽ hình.
GV yêu cầu h/s đọc tên tứ giác bạn vừa vẽ, chỉ ra các yếu tố đỉnh, cạnh của nó.
GV yêu cầu h/s làm ?1 tr.64 SGK.
GV giới thiệu k/n tứ giác lồi( hình 1a)
Vậy tứ giác lồi là tứ giác như thế nào?
GV cho HS làm ?2 SGK( Đề bài đưa lên bảng phụ)
Với tứ giác MNPQ, em hãy lấy:
Một điểm trong tứ giác?
Một điểm ngoài tứ giác?
Một điểm trên cạnh MN và đặt tên?
Chỉ ra hai góc đối nhau?
Hai cạnh kề nhau? Vẽ đường chéo.
Hai cạnh đối nhau?
C
A
B
C
D
D
C
B
B
B
A
A
A
C
D
D
ã
d)
a)
b)
c)
A
B
C
HS: Quan sát hình vẽ.
e)
D
H
M
N
P
Q
R
S
T
Tất cả các hình trên đều có bốn đoạn thẳng.
Chỉ trừ hình a.
HS: ở hình 1b có cạnh BC mà tứ giác nằm trong cả hai nửa mp có bờ là đường thẳng chứa cạnh đó.
Chỉ có tứ giác ở hình 1a luôn nằm trong một nửa mp có bờ là đường thẳng chứa bất cứ cạnh nào của tứ giác.
HS trả lời theo đ/n SGK.
Hai hs lần lượt trả lời miệng.
ã
M
N
P
Q
K
F
E
ã
ã
Hoạt động 3
2.Tổng các góc của một tứ giác (7 phút)
GV: Tổng các góc của một tam giác bằng bao nhiêu?
GV: Dựa vào Đ/L đó để tính các góc trong một tứ giác.
GV: Phát biểu Đ/l qua cách chứng minh và ghi bảng.
Hãy nêu dưới dạng gt và kl.
Gv: Đây là Đ/L nêu lên T/C về góc của một tứ giác.
HS: Tổng các góc của một tam giác bằng 1800
HS:Làm trên phiếu học tập
GT
ABCD
KL
Đại diện HS lên trình bày
Hoạt động 4
Luyện tập- củng cố (13 phút)
Bài tập 1 SGK Tr.66
( Đề bài và hình vẽ đưa lên bảng phụ)
GV: Bốn góc của tứ giác có thể đều nhọn, đều tù hoặc đều vuông được không?
Bài tập 2 cho học sinh làm vào phiếu học tập- GV thu một số bài để chấm.
HS trả lời miệng.
a) x=3600-(1100+1200+800)=500
b)x=3600-(900+900+900)=900
c) x=3600-(900+900+650)=1150
Hoạt động 5
Hưóng dẫn học ở nhà (2 phút)
Học thuộc Đ/N, Đ/l Trong bài.
Chứng minh được định lí tổng các góc trong một tứ giác.
Bài tập về nhà số 2,3,4,5 tr.66, 67 SGK.
Bài số 2, 9 SBT tr.61.
Đọc bài “ có thể em chưa biết” giới thiệu về tứ giác Long Xuyên tr.68 SGK.
A-Mục tiêu: Qua bài này HS cần:
Nắm chắc Đ/n hình thang, hình thang vuông, các yếu tố của hình thang.
Biết c/m một tứ giác là hình thang, hình thang vuông. Nhận dang hình thang ở những vị trí khác nhau một cách linh hoạt.
Biết vẽ một hình thang, một hình thang vuông, biết vận dụng Đ/L tổng số đo các góc của một tứ giác trong trường hợp hình thang, hình thang vuông.
Biết vận dụng tính toán vào thức tế: Kiểm tra một tứ giác là hình thang dựa vào ê-ke.
B- Chuẩn bị của GV và HS
-GV: Bảng phụ, thước thẳng.
-HS: thước thẳng, ê- ke.
C- Tiến trình dạy- học
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1
Kiểm tra (8 phút)
GV:a) Dựa vào số đo các góc trên hình vẽ, hãy tính số đo các góc G và H, biết rằng.
b) Nhận xét gì về hai đoạn thẳng FG và EH? Nêu lí do nhận xét đó?( Đề ghi bảng phụ)
HS: Làm bài vào vở nháp.
Một HS lên bảng chữa.
HS: Tứ giác EFGH có hai cạnh đối FG và EH song song vì =1800 và chúng ở vị trí góc trong cùng phía.( HS trả lời miệng)
.
Hoạt động 2
Định nghĩa ( 18 phút)
GV: Tứ giác ABCD có AB//CD là một hình thang. Vậy thế nào là một hình thang?
Yêu cầu HS đọc Đ/n hình thang tr.69 SGK.
GV cho HS viết tóm tắt đ/n.
Gv giới thiệu các yếu tố của hình thang.
AB//CD=> AB;CD gọi là cạnh đáy.
AD; BC là cạnh bên. AHDC;=> AH là đường cao.
GV yêu cầu HS làm ?1 SGK.
(Đề bài ghi bảng phụ)
HS làm ?2 SGK.hoạt động theo nhóm.
Nửa lớp làm phần a; nửa lớp làm phần b
( Đề bài ghi bảng phụ)
GV: hãy nêu GT- KL của bài toán?
Nêu PP chứng minh hai đoạn thẳng bằng nhau?
Em nào có cách chứng minh?
GV: Hướng dẫn HS nối AC. Xét ADC; CBA ta có điều gì?
Nửa lớp làm phần b).
GV: Hãy ghi GT-KL của bài toán?
GV hướng dẫn: Khi nối AC ta thấy hai DAC vàBCA như thế nào với nhau?
Tại sao?
GV cho một HS lên bảng trình bày.
Từ bài toán trên, em có nhận xét gì?
GV: Gọi một HS đọc nhận xét trong SGK.
H
D
C
A
B
HS vẽ hình 14 SGK vào vở
Một HS đọc đ/n trong SGK.
Tứ giác ABCD
là một hình thang
AB//CD ( hay AD//BC)
HS trả lời miệng.
a) Tứ giác ABCD là hình thang vì: BC//AD
b) Tứ giác EFGH là hình thang vì có EH//FG.
c) Tứ giác INKM không phải là hình thang.
?2- Cả lớp làm vào vở nháp.
Đại diện hai nhóm lên bảng trình bày.
2
A
B
C
D
╯
╯
╭
╭
1
1
2
GT
Hình thang
ABCD
(AB//CD);
AD//BC
KL
AD=BC;
AB=CD
C/m: Nối AC. Xét ADC; CBA có: ( hai góc so le trong).Cạnh AC chung.
( hai góc so le trong )
=> ADC =CBA ( g.c.g)
( Hai cạnh tương ứng)
GT
Hình thang ABCD
╯1
╭
D
C
B
A
1
( AB//CD) AB=CD
KL
2
/
1
AD//BC; AD=BC
2
Chứng minh.
/
Nối AC. Xét DAC và
BCA có: AB=CD (gt)
( Hai góc so le trong)
cạnh AC chung.=> (hai góc tương ứng)=> AD//BC ( vì có hai góc so le trong bằng nhau) và AD=BC( hai cạnh tương ứng.
Nhận xét: SGK tr.70.
Hoạt động 3
H
A
B
C
D
E
F
G
Hình thang vuông ( 7 phút)
GV: Cho HS xem bảng phụ.Hãy KT hai tứ giác trên là hình thang?
Bằng trực quan?;
Bằng ê- ke?
Có nhận xét gì về tứ giác ABCD?
Gv:Tứ giác ABCD có ABAD,AB//DC=> ABCD là hình thang vuông.
GV: vậy thế nào là hình thang vuông?
Để c/m một tứ giác là hình thang vuông ta cần c/m điều gì?
HS Vẽ hình vào vở.(SGK-TR70)
ABCD là hình thang vuông
HS: Trả lời…
Hoạt đông 4
Luyện tập (10 phút)
Bài 6 tr.70 SGK( HS thực hiện trong 3 phút)
Gv gợi ý: Vẽ thêm một đường thẳng vuông góc với cạnh có thể là đáy của hình thang, rồi dùng ê-ke kiểm tra cạnh đối của nó.
Bài 7a)tr71 SGK-y/c HS quan sát hình và đề bài SGK( Đề bài ghi bảng phụ)
HS trả lời miệng:Tứ giác ABCD; INMK là hình thang. Tứ giác EFGH không phải là hình thang.
HS trình bày miệng.
Hoạt động 5
Hướng dẫn về nhà (2 phút)
Nắm vững đ/n hình thang, hình thang vuông và hai nhận xét trong SGK, Ôn lại đ/n và t/c tam giác cân.
Bài tập: 7(b,c), 8 tr.71 SGK; số 11, 12, 19 tr62 SBT.
Tiết 3
Mục tiêu:
Qua bài này HS cần:
Nắm chắc Đ/n , các tính chất và các dấu hiệu nhận biết hình thang cân.
Biết vận dụng Đ/n, các tính chất của hình thang cân trong việc nhận dạng và chứng minh được các bài toán có liên quan đến hình thang cân. Rèn luyện kĩ năng phân tích GT-KL của một Đ/l, kĩ năng trình bày lời giải một bài toán.
Rèn luyện thêm tư duy phân tích qua việc phán đoán, chứng minh.
Rèn luyện các đức tính cẩn thận, ch/x trong lập luận và chứng minh hình học.
Đồ dùng dạy- học
Thước chia khoảng, thước đo góc, com pa.
Hình vẽ sẵn hình 9 SGK.
Tiến trình dạy- học
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1
Kiểm tra( 8 phút)
GV nêu yêu cầu KT.
HS1: Phát biểu Đ/n hình thang, hình thang vuông?
Nêu nhận xét về hình thang có hai cạnh bên song song, hình thang có hai cạnh đáy bằng nhau?
HS2: Chữa bài tập số 8tr.71 SGK.
HS1 lên bảng trả lời…
Đ/n: SGK
Nhận xét: tr.70 SG.
HS2 lên bảng giải bài tập.
HT: ABCD (AB//CD)
=> …
Hoạt động 2
Định nghĩa (12 phút)
GV: Giả sử hình thang ABCD ở trên có => ABCD là hình thang gì?
GV: Khác với tam giác cân, hình thang cân được đ/n theo góc.
GV: Đưa hình 23 SGK lên bảng, giới thiệu hình thang cân. Vậy thế nào là hình thang cân?
GV: Cho HS làm ?2 SGK tr72.
( Đề bài ghi bảng phụ)
HS:…
HS xem hình và nêu đ/n…
ABCD là hình thang cân(AB//CD)
HS làm vào vở nháp. sau đó cho ba em đứng tại lớp trình bày miệng
Hoạt động 3
Tính chất (14 phút)
GV: Hướng dẫn HS cách vẽ hình thang cân.
Hãy vẽ một hình thang cân vào vở?
GV: Em có nhận xét gì về hai cạnh bên của hình thang cân?
GV: Đó chính à nội dung của 1 tr.72 SGK.
GV: Hãy nêu Đ/L dưới dạng GT-KL?
(GV ghi bảng)
Cho HS chứng minh trong khoảng 3 phút, sau đó gọi HS chứng minh miệng?
\
A
B
C
D
\
GV: Tứ giác ABCD sau có phải là hình thang cân không? Vì sao?
( AB//CD; ≠900)
GV: Từ đó rút ra
Chú ý tr 73 SGK.
( Đ/L 1 không có đ/l đảo)
GV: Hai đường chéo của hình thang cân có tính chất gì
Hãy vẽ hai đường chéo của hình thang cân?
Dùng thước thẳng đo? Rút ra nhận xét?
Nêu GT-KL của đ/l 2?
GV: Hãy c/m đ/l?
GV yêu cầu HS nhắc lại nội dung hai t/c của hình thang cân?
HS vẽ hình thang cân
A
B
C
D
╮
╭
HS: Hai cạnh bên
của hình thang
cân bằng nhau.
GT
ABCD là hình thang cân
(AB//CD)
KL
AD=BC
HS chứng minh Đ/L
Hs trả lời…
A
B
C
D
╮
╭
\
/
GT
ABCD hình thangcân
(AB//CD)
KL
AC=BD
Một HS chứng minh miệng.
Ta có DDAC= DCBD( DC chung).
ADB=BCD (đ/n hình thang cân)
AD=BC( t/c)=> AC=BD (cạnh tương ứng)
HS nêu lại đ/l 1 và đ/l 2.
Hoạt động 4
Dấu hiệu nhận biết( 7 phút)
GV: Cho Hs thực hiện ?3(đề bài ghi bảng phụ)=> nội dung đ/l 3 tr74 SGK.
GV hỏi:Đ/l 2,3 có quan hệ gì?
Có những dấu hiệu nào nhận biết tứ giác là hình thang cân?
HS: Định lí 3 SGK.
HS tự chứng minh.
HS trả lời…
Hoạt động 5
Củng cố (3 phút)
GV hỏi: Qua giờ học này chúng ta cần ghi nhớ điều gì?
- Tứ giác ABCD(AB//CD) là hình thang cân cần thêm ĐK gì?
HS: Đ/n; T/c; Dấu hiệu nhận biết.
Tứ giác ABCD có AB//CD(AB; CD: là đáy). H thg: ABCD là cân khi có ; hoặc đường chéo AC=BD.
Hoạt động 6
Hướng dẫn về nhà (1 phút)
Học kĩ định nghĩa, tính chất, dấu hiệu nhận biết tứ giác là hình thang cân.
Bài tập: 11 16 tr 74,75 SGK
Tiết 4
Mục tiêu
Khắc sâu kiến thức về hình thang, hình thang cân (đ/n, t/c và các dấu hiệu nhận biết)
Rèn các kĩ năng phân tích đề bài, kĩ năng vẽ hình, kĩ năng suy luận, kĩ năng nhận dạng hình.
Rèn tính cẩn thận chính xác.
Đồ dùng dạy- học. Thước thẳng, com pa, bảng phụ.
Tiến trình dạy- học.
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1
Kiểm tra ( 10 phút)
HS1: - Phát biểu đ/n, t/c, của hình thang cân? .
HS2: Chữa bài tập 15 SGK-TR75
A
GV vẽ hình, ghi GT-KL lên bảng phụ.
` Gt
ΔABC;AB=AC
AD=AE
Kl
a) BDEC là hình thang cân.
b) Tính B? C?
D2? E2?
1
C
P
◡
2
2
E
500
\
1
D
B
Gv: Hướng dẫn HS c/m cách khác, vẽ phân giác AP=>DE//BC (cùng vuông góc với AP)
Hs1: Lên bảng trả lời.
HS2: Chữa bài tập.
a) Ta có:ΔABC cân tại A(gt)
mà ở vị trí đồng vị=>DE//BC hình thang BDEC có => BDEC là hình thang cân.
b) Nếu
Trong hình thang cân BDEC có =650=>
Hoạt động 2
Luyện tập (33 phút)
Số 16- tr75 SGK.
GV cùng HS vẽ hình.
Gv gợi ý: So sánh với bài 15, hãy cho biết để c/m BEDC là hình thang cân ta cần c/m điều gì?
Bài 18-tr75 SGK.
Hình vẽ đưa lên bảng phụ.
Bài tập thêm.
GV: hãy
C/m đ/l: “Hình thang có hai đường chéo bằng nhau là hình thang cân”.
GV: Dựa vào kq bài 18 để c/m đ/l trên
A
Một HS đọc to đề bài.
Một HS ghi GT-KL.
Gt
D
E
ABC cân tại A;
2
Kl
C
1
2
2
1
B
BEDC là hình thang cân có BE=ED
-HS: Cần c/m AD=AE.
a) Xét ABD và ACE có: AB=AC (gt);
chung,
=> ABD = ACE (g.c.g)=> AD=AE (cạnh tương ứng)=> ED//BC và có =>
BEDC là hình thang cân.
b)ED//BC=> ( so le trong). Có
cân=>BE=ED.
Bài 18. Một h/s đọc to đề.
Một h/s khác lên bảng vẽ hình- viết GT-KL.
GT
H. thang ABCD(AB//CD);AC=BD
BE//AC; EDC
KL
a) BDE cân; b) ACD=BDC
c) H.thang ABCD cân.
B
A
\
/
1
1
E
D
C
Hs: Hình thang ABEC có hai cạnh bên song song: AC//BE (gt)=> AC=BE ( nhận xét về h.thang). Mà AC=BD (gt)=>BE=BD
=>BDE cân.
b) Theo Kq câu a ta có:BDE cân tại B=>
mà AC//BE=>( Hai góc đồng vị)=>. Xét ACE và BDC có:
AC=BD (gt)(c/m trên). cạnh DC chung=>Xét ACE = BDC (c.g.c).
c) ACD=BDC=>ADC=BCD( hai góc tương ứng)=> h.thang ABCD cân(đ/n)
Hs hoạt động theo nhóm. Đại diện trình bày miệng.
~~~~~~~~~~~~~~~~~~
Hoạt động 3
hướng dẫn về nhà (2 phút)
Ôn tập đ/n, t/c,dấu hiệu nhận biết của hình thang, hình thang cân.
Bài tập về nhà; 17; 19 tr.75 SGK.
Số 28; 29; 30 SBT.
Tiết 5
Mục tiêu.
HS nắm được đ/n và các đ/l (1, 2) về đường trung bình của tam giác.
HS biết vận dụng các định lí học trong bài để tính độ dài, c/m hai đoạn thẳng bằng nhau, hai đường thẳng song song.
Rèn luyện cách lập luận trong c/m đ/l và vận dụng các đ/l đã học vào giải các BT.
Chuẩn bị của GV và HS.
Thước thẳng, com pa, bảng phụ.
Tiến trình dạy- học.
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1
Kiểm tra (5 phút)
GV: Cho Hs làm bài tập.
Vẽ tam giác ABC, vẽ trung điểm D của cạnh AB, vẽ đường thẳng xy//cạnh BC cắt AC tại E.
Quan sát hình vẽ, đo đạc và cho biết dự đoán về vị trí điểm E trên AC?
GV đó chính là nội dung đ/l 1 của bài học hôm nay…
Cả lớp làm vào vở nháp.
A
Một hs lên bảng vẽ hình. Nhận xét
\
Dự đoán:
y
x
E
D
.
\
C
B
E: trung diểm của AC
Hoạt động 2
Định lí ( 10 phút)
GV yêu cầu HS đọc Đ/L –1
C
B
D
\
\
A
GV phân tích nội dung định lí và vẽ hình.
◡
◡
E
◡
╮
◡
F
╮
╮
GV yêu cầu HS nêu GT-KL của định lí?
GV: Em nào có thể chứng minh được định lí trên?
Gv gợi ý: Để c/m AE=EC, ta nên tạo ra một tam giác có cạnh EC và bằng ADE. Do đó, nên vẽ EF//AB (FBC).
GV có thể ghi bảng tóm tắt các bước c/m.
-Hình thang DEFB (DE//BF) có DE//BF=> DB=EF=>EF=AD.
-ADE=EFC(g.c.g)=>AE=EC.
-GV yêu cầu một HS nhắc lại nội dung đ/í 1
HS vẽ hình vào vở.
Một HS nêu GT-KL
GT
ABC; AD=AC;
DE//BC
KL
AE=EC
HS chứng minh miệng.
Kẻ EF//AB(FBC).
Hình thang DEFB có hai cạnh bên song song(DB//EF). Nên:
ADE và EFC có:
AD=EF(c/m trên)
( cùng bằng ).( Hai góc đ. vị)
=>ADE=EFC(g.c.g)=> AE=EC. Vậy E là trung điểm của AC.
Hoạt động 3
Định nghĩa ( 5 phút)
GV: D là trung điểm AB; E là trung điểm AC=> DE gọi là đường TB của ABC. Vậy đường TB của tam giác là gì?
GV: Một tam giác có mấy đường TB?
HS trả lời…
Một HS khác nhắc lại.
HS: Có ba đường TB.
Hoạt động 4
Định lí 2 ( 12 phút)
GV yêu cầu HS thực hiện ?2 SGK.
GV bằng đo đạc các em có nhận xét đó, nó chính là nội dung của định lí 2.
GV yêu cầu HS đọc định lí 2.
GV vẽ hình lên bảng.
x
x
D
F
B
/
/
A
Hãy nêu GT-KL của định lí?
E
C
GV cho HS tự đọc phần c/m ít phút. Em nào có thể trình bày được c/m?
C
Cho HS thực hiện ?3.( Đề bài và hình vẽ đưa lên bảng phụ)
B
E
50m
\
D
=
A
=
\
HS thực hiện?2.
Nhận xét:ADE= và DE=BC.
GT
ABC;AD=DB;AE=EC
KL
HS tự đọc phần c/m ít phút. Sau đó một em trình bày bài giải.
HS nêu cách giải ?3-SGK-TR 76
DE là đgTB củaABC
=>DE=BC=>BC=2.DE=2.50=100(m)
vậy khoảng cách giữa hai điểm B và C là 100m.
Hoạt động 5
Luyện tập (11 phút)
A
Bài 20 SGK. Cho HS đứng tại chỗ trình bày.
=
=
I
D
Bài 22 tr-80 SGK
E
Cho hình vẽ.
=
/
/
C/M: AI=IM?
B
C
M
HS sử dụng hình vẽ sãn trong SGK trình bày miệng…DCB có BE=ED (gt);
BM=MC(gt)=>EM là đường TB=> EM//DC(t/c đường TB).Có IDC=>DI//EM
. AEM có:AD=DE(gt); AD=DE(gt);
DI//EM (c/m trên)=> AI=IM( Đ/L 1 đường TB của ).
Hoạt động 6
Hướng dẫn về nhà (2 phút)
Nắm vững định nghĩa đường TB của tam giác, hai định lí trong bài, với định lí 2 là t/c đường TB của tam giác.
Bài tập số: 21 tr-79 SGK,
Bài số 34; 35; 36 tr-64 SBT.
Tiết 6
Mục tiêu
HS nắm được đ/n, các định lí về đường trung bình của hình thang.
HS biết vận dụng các định lí về đường trung bình của hình thang để tính độ dài, chứng minh hai đường thẳng bằng nhau, hai đường thẳng song song.
Rèn luyện cách lập luận trong c/m định lí và vận dụng các định lí đã học vào giải các bài tập.
Chuẩn bị đồ dùng dạy-học
Bảng phụ, thước thẳng, com pa.
Tiến trình dạy-học
Hoat động của giáo viên
Hoạt động của học sinh
Hoạt động 1
1. kiểm tra (5 phút)
GV nêu y/c kiểm tra.
1) Phát biểu đ/n, t/c về đường trung bình của tam giác, vẽ hình minh hoạ?
x
B
A
2) Chô hình thang ABCD (AB//CD) như hình vẽ. Tính x,y?
//
\
x
E
F
M
1cm
2cm
//
\
x
y
D
C
GV: Đoạn thẳng EF ở hình trên chính là đường TB của hình thang. Vậy thế nào là đường TB của hình thang, và đường TB của hình thang có những t/c gì? Đó là nội dung bài học hôm nay.
HS lên bảng kiểm tra.
HS trả lời…
2) HS trình bày.
ACD có EM là đườngTB
=>EM=DC.=> y=CD=2EM=2.2=4(cm)
ACB có MF là đường TB
=>MF=AB=>x=AB=2MF=2.1=2(cm)
Hoạt động 2
Định lí 3 ( 10 phút)
GV yêu cầu HS thực hiện ?4 tr 78 SGK.
Dề bài ghi bảng phụ
GV: Em có nhận xét gì về vị trí điểm I trên AC? Vị trí điểm F trên BC?
GV: Đó là nhận xét đúng.
Ta có đ/l sau:
GV đọc đ/l 3 tr- 68 SGK.
GV: Gọi một HS nêu GT-KL của định lí?
Gv: Để c/m BF=FC ta cần c/m điều gì?
Gợi ý: C/m AI=IC.
GV gọi một HS c/m miệng.
D
B
A
Một HS đọc đề bài.
Một Hs lên bảng vẽ hình, cả lớp vẽ hình vào vở.
I
\
F
E
D
C
B
A
\
HS trả lời: I là trung điểm của AC; F là trung điểm của BC.
HS: Đọc lại đ/l 3 SGK.
HS nêu GT-KL.
ABCD là hình thang.(AB//CD)
GT AE=AD;EF//AB;EF//CD
KL BF=FC
HS: Cả lớp theo dõi bạn c/m. nhận xét
~~~~~~~~~~~~~~~
Hoạt động 3
Định nghĩa ( 7 phút)
GV nêu: Hình thang ABCD (AB//CD) có E là trung điểm của AD, EF là trung điểm của BC, đoạn thẳng EF là đường TBình của hình thang ABCD.Vậy thế nào là đường trung bình của hình thang?
GV nhắc lại đ/n đường TBình của hình thang. ( Dùng phấn màu tô dường TBình của hình thang ABCD)
Gv: Hình thang có mấy đường TBình?
HS: Trả lời.
Một HS khác đọc lại đ/n đường Tbình của hình thang trong SGK.
HS: Nếu hình thang có một cặp cạnh song song thì có một đường TBình. Nếu hình thang có hai cặp cạnh song song thì có hai đường TBình.
Hoạt động 4
định lí 4 ( 15 phút)
( Tính chất đường TBình của hình thang)(15 phút)
GV: Từ T/c đường TBình của Δ, hãy dự đoán đường TBình của hình thang có t/c gì?
GV nêu đ/l 4 tr-78 SGK.
GV vẽ hình lên bảng.
F
C
\
1
2
1
B
A
=
K
I
E
=
\
D
GV yêu cầu HS nêu GT-KL của đ/l?
Gv: để C/M EF//AB Và CD ta làm như thé nào? ( Tạo một tam giác có EF là đường TB. Muốn vậy ta cần kéo dài AF cắt đường thắng CD tại K. Hãy c/m AF=FK?
GV: Yêu cầu HS làm ?5.
A
/
24cm
X?
B
C
/
32 cm
D
F
E
HS dự đoán…
Một HS khác đọc lại định lí 4.
HS vẽ hình vào vở.
GT
Hình thang ABCD(AB//CD)
AE=ED; BF=FC
KL
EF//AB; EF//CD;
EF=
HS c/m tương tự như SGK.
B1 chứng minh Δ FBA=Δ FCK(g.c.g)
=>FA=FK; AB=CK.
B2 ; Xét Δ ADK có EF là đường TBình=>EF//DK và EF= DK.
=> EF//AB//DC và EF= (DC+AB)
HS: Hình thang ACHD(AD//CH) có AB=BC(gt)
BE//AD//CH(cùng ^ DH)=> DE=EH( đ/l 3 đường TBình của hình thang)=>
BE=(AD+CH) ⇔ 32=(24+x)
=>x=32.2-24=>x=40 (m)
Hoạt động 5
Luyện tập- củng cố (6 phút)
GV nêu câu hỏi củng cố.
Các câu sau đúng hay sai?
1) Đường TB của hình thang là đoạn thẳng đi qua trung điểm hai cạnh bên của hình thang
2)Đường TB của hình thang đi qua trung điểm hai đường chéo của hình thang.
3) Đường TB của hình thang song song với hai đáy và bằng nửa tổng hai đáy.
HA trả lời.
Sai
Đúng
Đúng
Hoạt động 6
Hướng dẫn về nhà ( 2 phút)
Nắm vững đ/n và hai đ/l về đường TB của hình thang.
Làm các bài tập 23; 25; 26 tr 80 SGK.
Bài 37; 38 40 SBT.
Tiết sau luyện tập.
Tiết 7
Mục tiêu
Khắc sâu kiến thức về đường TB của tam giác và đường TB của hình thang cho HS.
Rèn kĩ năng vẽ hình rõ, chuẩn xác, kí hiệu đủ GT đầu bài trên hình.
Rèn kĩ năng tính, so sánh độ dài đoạn thẳng, kĩ năng chứng minh.
ĐỒ DÙNG DẠY-HỌC
* Thước thẳng, com pa, bảng phụ, bỳt dạ.
Tiến trình dạy- học
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1
Kiểm tra ( 12 phỳt)
GV: So sánh đường TB của tam giác, đường TB của hình thang về đ/n, t/c?
Vẽ hình minh hoạ?
Một HS lên bảng trả lời câu hỏi như nội dung bảng sau và vẽ hình minh hoạ.
Đường TB của Δ
Đường TB của hình thang
Định nghĩa
Là đoạn thẳng nối trung điểm hai cạnh của Δ
Là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.
Tính chất
Song song với cạnh thứ ba và bằng nửa cạnh ấy
Song song với hai đáy và bằng nửa tổng hai đáy.
Hình vẽ
A
<
/
N
M
<
/
D
C
B
MN//BC; MN= BC
F
E
C
B
A
//
//
_
_
EF//AB//CD; EF=(AB+CD0
Hoạt động 2
Luyện tập bài tập cho hình vẽ sẵn (12 phút)
Đề bài ghi bảng phụ. Bài 1. Cho hình vẽ.
=
X
I
_
A
C
D
X
╯
=
╯
M
N
_
B
Tứ giác BMNI là hình gì?
Nếu Â=80 thì các góc của tứ giác BMNI bằng bao nhiêu?
GV: Hãy quan sát hình vẽ rồi cho biết GT- KL của bài toán?
GV: hãy cho biết tứ giác BMNI là hình gì? Chứng minh điều đó?
GV: Còn cách nào c/m BMND là hình thang
Cân nữa không?
GV: Hãy tính các góc của tứ giác BMNI nếu Â=580?
HS: Gt cho
Δ ABC(Â=900)
P/giácAD của Â
M;N;I lần lượt là trung điểm của AD;AC;DC.
Hs:
-Tứ giác BMNI là hình thang cân vì:
+ Theo hình vẽ ta có:
MN là đường TB của Δ ADC=> MN//DC hay MN//BI( vì B;D;I;C thẳng hàng=>BMNI là hình thang.
+ Δ ABC (=900); BN là trung tuyến
=>BN=AC (1)
và Δ ADC có MI là đường TB( vì AM=MD;DI=IC)=>MI=AC(2)
từ (1) và (2)=>BN=MI(=AC)
=>BMNI là hình thang cân( hình thang có hai đường chéo bằng nhau)
HS: C/m BMNI là hình thang có hai góc kề đáy bằng nhau(MDB=MBD=NID do
Δ MBD cân)
HS tính miệng.
b) Δ ABD (=900) có
BAD=.580=290 => ADB=900-290=610
=> MDB=610( vì Δ BMD cân tại M)
Do đó NID=MNI=1800-610=1190
************************
Hoạt động 3
Luyện tập bài tập có kĩ năng vẽ hình (15 phút)
B
Bài 27 SGK.
=
A
x
_
F
=
E
x
_
K
D
C
GV:Y/c HS suy nghĩ trong thời gian 3 phút. Sau đó gọi học sinh trả lời miệng câu a
b)GV: Gợi ý học sinh xét 2 trường hợp:
E,k,F, không thẳng hàng
E,k,F, thẳng hàng
Một HS đọc to đề bài trong SGK.
Một HS lên bảng vẽ hình và viết GT-KL trên bảng, cả lớp làm vào vở nháp.
Gt
ABCD ;E;F;K thứ tự là trung điểm của AD;BC;AC
Kl
a)So sánh độ dài EK và CD;KFvà AB
b)cm: EF ≤ (AB+CD)
Giai- HS1:a)Theo đầu bài ra ta có:
E;F;K lần lượt là trung diểm của AD;BC;AC => EK là đưòng trung bình của ΔADC =>EK=DC.
HS2: b) Nếu E:K:F không thẳng hàng,
Δ EKF có EF< EK+KF( bất đẳng thức Δ )
Hoạt động 4
Củng cố ( 4 phút)
GV: Đưa bài tập lên bảng phụ.
Các câu sau đúng hay sai?
Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
đường thẳng đi qua trung điểm hai cạnh bên của hình thang thì song song với hai đáy.
không thể có hình thang mà đường trung bình bằng độ dài một đáy.
HS trả lời miệng.
Đúng.
Đúng
Sai
Hoạt động 5
Hướng dẫn về nhà ( 2 phút)
Ôn lại định nghĩa và các tính chất về đường TB của Δ , đường TB của hình thang.
Ôn lại các bài toán dựng hình đã biết ( TR81;82 SGK).
Bài tập về nhà số: 37; 38; 41; 42 tr:64;65 SBT.
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
Tiết 8
Mục tiêu
HS biết dùng thước và com pa để dựng hình( chủ yếu là dựng hình thang) theo các yếu tố đã cho bằng số và biết trình bày hai phần: Cách dựng và chứng minh.
HS biết sử dụng com pa và thước để dựng hình vào vở một cách tương đối chính xác.
Rèn luyện tính cẩn thận, chính xác khi sử dụng dụng cụ, rèn khả năng suy luận, có ý thức vận dụng dựng hình vào thực tế.
Chuẩn bị của GV và HS
Thước thẳng có chia khoảng, com pa, bảng phụ, thước đo góc,
Tiến trình dạy- học
Hoạt động của giáo viên
Hoạt động của học sinh
Hoạt động 1
Giới thiệu bài toán dựng hình (7 phút)
GV: Chúng ta đã biết vẽ hình bằng nhiều dụng cụ: Thước thẳng; thước đo góc; com pa; ê-ke vv
Ta xét các bài toán vẽ hình mà chỉ sử dụng hai dụng cụlà thước và com pa, chúng được gọi là bài toán dựng hình.
GV: Thước thẳng có tác dụng gì?
GV: Com pa có tác dụng gì?
HS nghe GV trình bày.
HS:
- Thước thẳng: Vẽ một đ/t khi biết hai điểm của nó; Vẽ một đ/t khi biết hai đầu mút của nó; vẽ được một tia khi biết gốc và một điểm của tia;
- Com pa: Vẽ đường tròn khi iết tâm và bán kính của nó.
Hoạt động 2
Các bài toán dựng hình cơ bản (13 phút
GV: Yêu cầu HS nhắc lại các bài toán dựng hình cơ bản ở lớp 7
GV hướng dẫn ôn lại cách dựng:
- Một góc bằng góc cho trước.
- Dựng đường thẳng song song với đường thẳng cho trước.
-Dựng đường trung trực của đoạn thẳng cho trước.
-Dựng đường thẳng vuông góc với đường thẳng đã cho.
B
A
O
C
α
α
C
B
A
І І
D
GV: Ta được sử phép sử dụng các bài toán dựng hình trên để giải các bài toán dựng hình khác.
HS; Trả lời (tr 81-81 SGK)
Hs dựng theo hướng dẫn của GV.
Hoạt động 3
Dựng hình thang (18 phút)
GV xét VD tr 82 SGK.
GV hướng dẫn.
- Tìm cách dựng: Vẽ phác hình cần dựng v
File đính kèm:
- hinh hoc 8tiet 119.doc