I MỤC TIÊU:
- Kiến thức: Biết sử dụng các cụm từ “cung căng dây” và “dây căng cung”, phát biểu được định lí1, 2 và hiểu được vì sao các định lí này chỉ phát biểu đối với các cung nhỏ trong một đường tròn hay hai đường tròn bằng nhau.
- Kỹ năng: Hiểu và vận dụng các định lí 1 và 2 từ các bài toán tính toán đơn giản đến các bài toán chứng minh hình học.
- Thái độ: Rèn HS tính cẩn thận trong vẽ hình, tính toán, trong lập luận và chứng minh chặt chẽ.
II CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH:
- Giáo viên: Hệ thống câu hỏi gợi mở, các dụng cụ: thước thẳng, compa, êke, bảng phụ ghi sẵn các bài tập và nội dung quan trọng của bài học.
- Học sinh: Bảng nhóm, các dụng cụ: thước thẳng, compa, êke, ôn tập kiến thức tam giác bằng nhau.
III TIẾN TRÌNH TIẾT DẠY:
1. Ổn định tổ chức:(1) Kiểm tra nề nếp - điểm danh.
2. Kiểm tra bài cũ:(5)
4 trang |
Chia sẻ: oanh_nt | Lượt xem: 933 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án Hình học 9 năm học 2008- 2009 Tiết 39 Liên hệ giữa cung và dây, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 24/01/06 Ngày dạy: 25/01/06
Tiết:39 §2. LIÊN HỆ GIỮA CUNG VÀ DÂY
I MỤC TIÊU:
- Kiến thức: Biết sử dụng các cụm từ “cung căng dây” và “dây căng cung”, phát biểu được định lí1, 2 và hiểu được vì sao các định lí này chỉ phát biểu đối với các cung nhỏ trong một đường tròn hay hai đường tròn bằng nhau.
- Kỹ năng: Hiểu và vận dụng các định lí 1 và 2 từ các bài toán tính toán đơn giản đến các bài toán chứng minh hình học.
- Thái độ: Rèn HS tính cẩn thận trong vẽ hình, tính toán, trong lập luận và chứng minh chặt chẽ.
II CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH:
- Giáo viên: Hệ thống câu hỏi gợi mở, các dụng cụ: thước thẳng, compa, êke, bảng phụ ghi sẵn các bài tập và nội dung quan trọng của bài học.
- Học sinh: Bảng nhóm, các dụng cụ: thước thẳng, compa, êke, ôn tập kiến thức tam giác bằng nhau.
III TIẾN TRÌNH TIẾT DẠY:
Ổn định tổ chức:(1’) Kiểm tra nề nếp - điểm danh.
Kiểm tra bài cũ:(5’)
Nội dung
Đáp án
HS1:
1) Hãy chọn phát biểu đúng nhất trong các phát biểu sau:
A. Góc ở tâm một đường tròn là góc có đỉnh là tâm của đường tròn đó.
B. Góc ở tâm một đường tròn là góc có hai cạnh là hai bán kính của đường tròn đó.
C. Góc ở tâm một đường tròn là góc có các cạnh xuất phát từ tâm của đường tròn đó.
D. Cả 3 phát biểu trên đều đúng.
E. A và C đúng.
2) Hãy điền vào chỗ trống để được các phát biểu đúng:
1. Cung nhỏ là cung có số đo ....... 1800.
2. Cung lớn là cung có số đo ....... 1800.
3. Trong một đường tròn hay ......... bằng nhau:
- Hai cung bằng nhau là hai cung có ...... số đo.
- Trong hai cung, cung nào có ...... lớn hơn thì ......
4. Tổng số đo của hai cung có chung mút trong một đường tròn bằng .....0.
HS2: Cho đường tròn (O) có hai cung nhỏ AB và CD bằng nhau. CMR: AB = CD.
HS1:
1) Đáp án đúng nhất là D
2)
Bé hơn
lớn hơn
hai đường tròn; cùng; số đo; cung đó lớn hơn.
360
HS2:
Vì sđ = sđ (gt)
Nên
Xét tam giác OAB và tam
giác OCD, ta có:
OA = OC, OB = OD (gt)
(cmt)
Do đó (c – g – c)
Suy ra AB = CD (hai cạnh tương ứng)
Bài mới:
¯Giới thiệu bài:(1’)
Để so sánh hai cung ta tiến hành so sánh hai số đo của chúng, ngoài phương pháp này ta còn phương pháp nào khác không? Trong tiết học hôm nay chúng ta sẽ tìm hiểu vấn đề này.
¯Các hoạt động:
TL
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
KIẾN THỨC
14’
10’
10’
Hoạt động 1: Tìm hiểu và chứng minh định lí 1
Nhận xét mở đầu:
(GSK)
Định lí 1: (SGK)
Bài tập 10: (SGK)
a)
b)
GV: Người ta dùng cụm từ “cung căng dây” hoặc “dây căng cung” để chỉ mối liên hệ giữa cung và dây có chung mút.
H: Trong một đường tròn, mỗi dây căng bao nhiêu cung?
GV: Với các kiến thức dưới đây ta chỉ xét những cung nhỏ.
Trở lại bài tập HS2: Với hai cung nhỏ trong một đường tròn, nếu hai cung bằng nhau thì căng hai dây có độ dài như thế nào? Điều ngược có đúng không? Từ đó HS phát biểu nội dung định lí 1.
GV yêu cầu HS vẽ hình và nêu gt, kl của định lí 1.
GV yêu cầu HS thực hiện chứng minh định lí 1b bằng hoạt động nhóm.
GV kiểm tra các nhóm thực hiện bài chứng minh trong 3’.
GV gọi HS nhắc lại nội dung định lí 1 và gt, kl của định lí (chú ý rằng định lí 1 cũng đúng trong trường hợp cung lớn).
GV giới thiệu bài tập 10 SGK tr 71.
a) Hãy vẽ đường tròn tâm O, bán kính R = 2cm? Hãy nêu cách vẽ cung AB có số đo bằng 600? Khi đó dây AB dài bao nhiêu cm?
b) Từ kết quả câu a làm thế nào để chia đường tròn thành sáu cung bằng nhau?
HS lắng nghe giới thiệu của GV.
Đ: Trong một đường tròn, mỗi dây căng hai cung phân biệt.
HS: Hai cung nhỏ bằng nhau thì căng hai dây có độ dài bằng nhau, điều ngược lại cũng đúng.
HS phát biểu nội dung định lí 1 SGK trang 71.
HS vẽ hình và nêu gt, kl định lí 1.
HS chứng minh định lí 1b bằng hoạt động nhóm.
HS thực hiện:
a) CaÙch vẽ cung AB
có số đo 600 là:
Vẽ góc ở tâm chắn cung AB có số đo 600.
(cách khác không sử dung thước đo độ: Vẽ (A;AO) cắt (O) tại B. Khi đó tam giác OAB là tam giác đều, do đó góc AOB bằng 600, suy ra cung AB bằng 600). Khi đó dây AB = R = 2cm (vì tam giác AOB đều)
b) Lấy điểm A1 tuỳ ý trên đường tròn O bán kính R làm tâm, dùng compa có khẩu độ bằng R vẽ đường tròn cắt (O) tại A2, rồi A3, …. Cách vẽ này cho biết có 6 dây cung bằng nhau: A1A2 = A2A3 = A3A4 = A4A5 = A5A6 = A6A1 = R.
suy ra có 6 cung bằng nhau và bằng 600 là:
.
hoạt động 2: phát biểu và nhận biết định lí 2
GV giới thiệu định lí 2 trang 71 SGK. Gọi vài HS nhắc lại nội dung định lí2.
GV hướng dẫn HS vẽ hình của định lí 2 và yêu cầu HS thực hiện : nêu gt, kl của bài toán.
GV giới thiệu bài tập 12 tr 72 SGK. Hình vẽ, gt và kl bài toán GV vẽ sẵn trên bảng phụ.
GV sử dụng lược đồ phân tích đi lên hướng dẫn HS giải câu a.
b) Dựa vào câu a và hãy vận dụng định lí 2, hãy chứng minh ?
HS nhắc lại nội dung định lí 2 trang 71 SGK.
HS vẽ hình và nêu gt, kl của bài toán.
HS tìm hiểu hình vẽ và gt, kl của bài toán.
HS trả lời các câu hỏi theo lược đồ phân tích đi lên, từ đó xây dựng bài giải hoàn chỉnh.
Trong tam giác ABC, ta có
BC < BA + AC, mà AC = AD (gt)
Suy ra BC < BA + AD = BD
Theo định lí về mối liên hệ giữa dây và khoảng cách từ tâm đến dây, ta có OH > OK.
b) Vì BC < BD (chứng minh câu a)
suy ra (định lí 2b)
Định lí 2: (SGK)
Hoạt động 3: Củng cố – luyện tập
Bài tập 13: (SGK)
GV yêu cầu HS nhắc lại nội dung các định lí 1 và 2 SGK trang 71.
GV giới thiệu HS bài tập 13 tr 72 SGK. GV hướng dẫn HS vẽ hình và nêu gt, kl bài toán.
Cho HS sinh 2’ để tìm hiểu lời giải, nếu HS chưa tìm ra hướng giải GV gợi ý vẽ đường kính MN vuông góc với CD tại I, cắt AB tại K. Hướng dẫn HS giải bằng “phân tích đi lên”
HS nhắc lại nội dung định lí 1 và 2 trang 71 SGK.
HS vẽ hình và nêu gt, kl của bài toán.
Giải: Vẽ đường kính MN CD tại I và cắt AB tại K.
Vì AB // CD nên MN AB.
Không mất tính tổng quát ta có thể giả sử K nằm giữa M và I.
Theo định lí về đường kính vuông góc với dây cung, ta có: MN là đường trung trực của AB và CD.
Do đó MA = MB, MC = MD.
Suy ra (đl1)
Trừ vế theo vế 2 đẳng thức trên, ta được:
Vậy .
Hướng dẫn về nhà: (4’)
Nắm vững nội dung của định lí 1 và 2, vận dụng các định lí này vào giải bài tập.
Làm các bài 11, 14 trang 72 SGK.
Hướng dẫn: bài 14:
Chứng minh IK là đường trung trực của AB, suy ra HA = HB.
Chứng minh tam giác OAB cân tại O, suy ra , từ đó suy ra
.
Điều kiện hạn chế là dây AB không đi qua tâm O.
IV RÚT KINH NGHIỆM BỔ SUNG:
File đính kèm:
- tiet39 hinh9.doc