Giáo án lớp 12 môn Đại số - Bài 1 : Nguyên hàm (2 tiết)

Về kiến thức:

- Hiểu được định nghĩa nguyên hàm của hàm số trên K, phân biệt rõ một nguyên hàm với họ nguyên hàm của một hàm số.

- Biết các tính chất cơ bản của nguyên hàm.

- Nắm được các phương pháp tính nguyên hàm.

 

doc7 trang | Chia sẻ: manphan | Lượt xem: 1113 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Đại số - Bài 1 : Nguyên hàm (2 tiết), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHÖÔNG III : NGUYEÂN HAØM - TÍCH PHAÂN VAØ ÖÙNG DUÏNG Tiết 49; 50 BAØI 1 : NGUYÊN HÀM (2 tiết) I. Mục đích yêu cầu: 1. Về kiến thức: Hiểu được định nghĩa nguyên hàm của hàm số trên K, phân biệt rõ một nguyên hàm với họ nguyên hàm của một hàm số. Biết các tính chất cơ bản của nguyên hàm. Nắm được các phương pháp tính nguyên hàm. 2. Về kĩ năng: - Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và các tính chất của nguyên hàm. - Sử dụng phương pháp đổi biến số, phương pháp tính nguyên hàm từng phần để tính nguyên hàm. 3. Về tư duy, thái độ: - Thấy được mối liên hệ giữa nguyên hàm và đạo hàm của hàm số. - Cẩn thận, chính xác, nghiêm túc, tích cực phát biểu xây dựng bài. II. Chuẩn bị: 1. Giáo viên: Giáo án, bảng phụ, phiếu học tập. 2. Học sinh: SGK, đọc trước bài mới. III. Tiến trình bài học: 1. Ổn định lớp: Kiểm tra sỉ số, tác phong 2. Kiểm tra bài cũ: (3’) Câu hỏi: Tìm đạo hàm các hàm số sau: a/ y = x3 b/ y = tan x 3. Bài mới: Tiết 1: HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS GHI BẢNG HĐ1: Nguyên hàm HĐTP1: Hình thành khái niệm nguyên hàm - Yêu cầu học sinh thực hiện HĐ1 SGK. - Từ HĐ1 SGK cho học sinh rút ra nhận xét (có thể gợi ý cho học sinh nếu cần) - Từ đó dẫn đến việc phát biểu định nghĩa khái niệm nguyên hàm (yêu cầu học sinh phát biểu, giáo viên chính xác hoá và ghi bảng) HĐTP2: Làm rõ khái niệm - Nêu 1 vài vd đơn giản giúp học sinh nhanh chóng làm quen với khái niệm (yêu cầu học sinh thực hiện) H1: Tìm Ng/hàm các hàm số: a/ f(x) = 2x trên (- ∞; +∞) b/ c/ f(x) = cosx trên (- ∞; + ∞) HĐTP3: Một vài tính chất suy ra từ định nghĩa. - Yêu cầu học sinh thực hiện HĐ2 SGK. - Từ đó giáo viên giúp học sinh nhận xét tổng quát rút ra kết luận là nội dung định lý 1 và định lý 2 SGK. - Yêu cầu học sinh phát biểu và C/M định lý. - Thực hiện dễ dàng dựa vào kquả KTB cũ. - Nếu biết đạo hàm của một hàm số ta có thể suy ngược lại được hàm số gốc của đạo hàm. - Phát biểu định nghĩa nguyên hàm (dùng SGK) - Học sinh thực hiện được 1 cách dễ dàng nhờ vào bảng đạo hàm. TH: a/ F(x) = x2 b/ F(x) = lnx c/ F(x) = sinx a/ F(x) = x2 + C b/ F(x) = lnx + C c/ F(x) = sinx + C (với C: hằng số bất kỳ) - Học sinh phát biểu định lý (SGK). I. NGUYÊN HÀM VÀ TÍNH CHẤT 1. Nguyên hàm Kí hiệu K là khoảng, đoạn hoặc nửa khoảng của R. Định nghĩa: (SGK/ T93) F(x) là nguyên hàm của f(x) nếu : trên VD: a/ F(x) = x2 là ng/hàm hàm số f(x) = 2 x trên (-∞; +∞) b/ F(x) = lnx là ng/hàm của hàm số c/ F(x) = sinx là ng/hàm của h/số f(x) = cosx trên (-∞; +∞) Định lý1: Nếu F(x) là một nguyên hàm của hs f(x) Thì F(x) + C (C là 1 hằng số) cũng là 1 nguyên hàm của f(x) trên K C/M.(SGK/T93) HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS GHI BẢNG - Từ định lý 1 và 2 (SGK) nêu K/n họ nguyên hàm của h/số và kí hiệu. - Làm rõ mối liên hệ giữa vi phân của hàm số và nguyên hàm của nó trong biểu thức. (Giáo viên đề cập đến thuật ngữ: tích phân không xác định cho học sinh) HĐTP4: Vận dụng định lý - H/s làm vd2 (SGK): Giáo viên có thể hướng dẫn học sinh nếu cần, chính xác hoá lời giải của học sinh và ghi bảng. HĐ2: Tính chất của nguyên hàm. HĐTP1: Mối liên hệ giữa nguyên hàm và đạo hàm: - Từ đ/n dễ dàng giúp học sinh suy ra tính chất 1 (SGK) - Minh hoạ tính chất bằng vd và y/c h/s thực hiện. HĐTP2: Tính chất 2 (SGK) - Yêu cầu học sinh phát biểu tính chất và nhấn mạnh cho học sinh hằng số K+0 - HD học sinh chứng minh tính chất. HĐTP3: Tính chất 3 - Y/cầu học sinh phát biểu tính chất. - Thực hiện HĐ4 (SGK) (giáo viên hướng dẫn học sinh nếu cần) - Chú ý - H/s thực hiện vd - Phát biểu tính chất 1 (SGK) - H/s thực hiện vd - Phát biểu tính chất. - Phát biểu dựa vào SGK. - Thực hiện Định lý2: Nếu F(x) là một nguyên hàm của hs f(x) trên K Thì mọi nguyên hàm của f(x) trên K đều có dạng : F(x) + C (C là 1 hằng số) C/M (SGK) ( C là hằng số ) Là họ tất cả các nguyên hàm của f(x) trên K *Chú ý: f(x)dx là vi phân của ng/hàm F(x) của f(x) vì dF(x) = F’(x)dx = f(x)dx. Vd2: a/ b/ c/ 2. Tính chất của nguyên hàm a/ Tính chất 1: Vd3: ∫(cosx)’dx = ∫(-sin)dx = cosx + C b/ Tính chất2: ∫kf(x) dx = k ∫f(x) dx k: hằng số khác 0 C/M: (SGK) c/ Tính chất 3: HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS GHI BẢNG - Minh hoạ tính chất bằng vd4 SGK và yêu cầu học sinh thực hiện. - Nhận xét, chính xác hoá và ghi bảng. HĐ3: Sự tồn tại của nguyên hàm - Giáo viên cho học sinh phát biểu và thừa nhận định lý 3. - Minh hoạ định lý bằng 1 vài vd 5 SGK (y/c học sinh giải thích) HĐ4: Bảng nguyên hàm - Cho học sinh thực hiện hoạt động 5 SGK. - Treo bảng phụ và y/c học sinh kiểm tra lại kquả vừa thực hiện. - Từ đó đưa ra bảng kquả các nguyên hàm của 1 số hàm số thường gặp. - Luyện tập cho học sinh bằng cách yêu cầu học sinh làm vd6 SGK và 1 số vd khác gv giao cho. - HD h/s vận dụng linh hoạt bảng hơn bằng cách đưa vào các hàm số hợp. - Học sinh thực hiện Vd: Với x Є(0; +∞) Ta có: ∫(3sinx + 2/x)dx = 3∫(sinx)dx + 2∫1/xdx = -3cosx + 2lnx +C - Phát biểu định lý - Thực hiện vd5 - Thực hiện HĐ5 - Kiểm tra lại kquả - Chú ý bảng kquả - Thực hiện vd 6 a/ = 2∫x2dx + ∫x-2/3dx = 2/3x3 + 3x1/3 + C. b/ = = c/ = 1/6(2x + 3)6 + C d/ = ∫sinx/cosx dx = - ln/cosx/ +C Vd4: Tìm nguyên hàm của hàm số f(x) = 3sinx + 2/x trên khoảng (0; +∞) Giải: Lời giải của học sinh đã chính xác hoá. 3. Sự tồn tại của nguyên hàm Định lý 3: Mọi hàm số liên tục trên K đều có nguyên hàm trên K (SGK/T95) Vd5: (SGK/T96) 4. Bảng nguyên hàm của một số hàm số thường gặp: Bảng nguyên hàm: (SGK/T97) Vd : Tính các nguyên hàm sau : a/ b/ Vd6: Tính a/ trên (0; +∞) b/ trên (-∞; +∞) c/ ∫2(2x + 3)5dx d/ ∫tanx dx Tiết 2 HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS GHI BẢNG HĐ5: Phương pháp đổi biến số HĐTP1: Phương pháp - Yêu cầu h/s làm hđộng 6 SGK. - Những bthức theo u sẽ tính được dễ dàng nguyên hàm - Gv đặt vđề cho học sinh là: ∫(x-1)10dx = ∫udu Và ∫lnx/x dx = ∫tdt - HD học sinh giải quyết vấn đề bằng định lý 1(SGKT98) - HD h/s chứng minh định lý - Từ định lý y/c học sinh rút ra hệ quả và phát biểu. - Làm rõ định lý bằng vd7 (SGK) (yêu cầu học sinh thực hiện) - Lưu ý học sinh trở lại biến ban đầu nếu tính nguyên hàm theo biến mới. HĐTP2: Rèn luyện tính nguyên hàm hàm số bằng p2 đổi biến số. - Nêu vd và y/c học sinh thực hiện. HD học sinh trả lời bằng 1 số câu hỏi H1: Đặt u như thế nào? H2: Viết tích phân bất định ban đầu thẽo? H3: Tính? H4: Đổi biến u theo x - Nhận xét và chính xác hoá lời giải. - Thực hiện a/ (x-1)10dx chuyển thành u10du. b/ lnx/x dx chuyển thành : - Phát biểu định lý 1 (SGK/T98) - Phát biểu hệ quả - Thực hiện vd7 Vì ∫sinudu = -cosu + C Nên: ∫sin (3x-1)dx = -1/3 cos (3x - 1) + C - Thực hiện vd: Đặt u = x + 1 Khi đó: ∫x/(x+1)5dx = ∫ u-1/u5 du = ∫1/u4 du - ∫1/u5 du = = II. PHƯƠNG PHÁP TÍNH NGUYÊN HÀM 1. Phương pháp đổi biến số Định lý1: (SGK/ T98) C/M (SGK) Hệ quả: (SGK/ T98) VD7: Tính ∫sin (3x -1)dx * Chú ý: (SGK/ T98) Vd8 (SGK) Tính ∫x/(x+1)5 dx Giải: Lời giải học sinh được chính xác hoá HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS GHI BẢNG - Nêu vd9; yêu cầu học sinh thực hiện. GV có thể hướng dẫn thông qua 1 số câu hỏi: H1: Đổi biến như thế nào? H2: Viết tích phân ban đầu theo u H3: Tính dựa vào bảng nguyên hàm. - Từ những vd trên và trên cơ sở của phương pháp đổi biến số y/cầu học sinh lập bảng nguyên hàm các hàm số cấp ở dạng hàm số hợp: dạng: f(u) với u = u (x) - Học sinh thực hiện a/ Đặt u = 2x + 1 du = 2dx ∫2 e 2x+1 dx = ∫ eu du = eu + C = e 2x+1 + C b/ Đặt u = x5 + 1 du = 5x4dx ∫ 5x4 sin (x5 + 1)dx = ∫ sin u du = - cos u +c = - cos (x5 + 1) + c - Học sinh thực hiện Vd9: Tính a/ ∫2e2x +1 dx b/ ∫ 5x4 sin (x5 + 1)dx Giải: Lời giải học sinh được chính xác hoá . - Bảng nguyên hàm 1 số hàm số sơ cấp ở dạng hàm số hợp. (bảng phụ) HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS GHI BẢNG HĐ6: Phương pháp nguyên hàm từng phần. HĐTP1: Hình thành phương pháp. - Yêu cầu và hướng dẫn học sinh thực hiện hoạt động 7 SGK. - Từ hoạt động 7 SGK hướng dẫn học sinh nhận xét và rút ra kết luận thay U = x và V = cos x. - Từ đó yêu cầu học sinh phát biểu và chứng minh định lý - Lưu ý cho học sinh cách viết biểu thức của định lý: V’(x) dx = dv U’ (x) dx = du HĐTP2: Rèn luyện tính nguyên hàm hàm số bằng phương pháp nguyên hàm từng phần. - Nêu vd 9 SGK yêu cầu học sinh thực hiện. GV có thể hướng dẫn thông qua các câu hỏi gợi ý: Đặt u = ? Suy ra du = ? , dv = ? Áp dụng công thức tính - Nhận xét , đánh giá kết quả và chính xác hoá lời giải , ghi bảng ngắn gọn và chính xác lời giải. - Từ vd9: yêu cầu học sinh thực hiện HĐ8 SGK - Nêu 1 vài ví dụ yêu cầu học sinh thực hiện tính khi sử dụng phương pháp nguyên hàm từng phần ở mức độ linh hoạt hơn. - GV hướng dẫn học sinh thực hiện tính (lặp lại tính nguyên hàm 1 số lần ) - Nhận xét và chính xác hoá kết quả. - Thực hiện: ∫(x cos x)’ dx = x cos + C1 ∫cosx dx = Sin x + C2 Do đó: ∫x sin x dx = - x cosx + sin x + C (C = - C1 + C2) - Phát biểu định lý - Chứng minh định lý: - Thực hiện vídụ: a/ Đặt: u = x dv = ex dx Vậy: du = dx , v = ex b/ Đặt u = x , dv = cos dx, du = dx , v = sin x Do đó: ∫ x cos x dx = x sin x - ∫sin dx = x sin x + cosx + C c/ Đặt u = lnx, dv = dx du = 1/2 dx , v= x Do đó: ∫ lnx dx = xlnx - x + c - Thực hiện 1 cách dễ dàng. - Thực hiện theo yêu cầu giáo viên a/ Đặt u = x2 và dv = cosx dx ta có: du = 2xdx, v = sin x do đó: ∫x2 cosxdx = x2 sin x - ∫2x sin x dx Đặt u = x và dv = sin x dx du = dx , v = - cosx ∫x sin x dx = - xcos x + ∫ cos x dx = - x cos x + sin x + C Vậy: kết quả = x2 sin x - 2 (- x cosx + sin x +C) - Nhắc lại theo yêu cầu của giáo viên. 2. Phương pháp tính nguyên hàm từng phần: Định lý 2: (SGK/T99) Hoặc : Chứng minh: (SGK) *Chú ý: VD9: Tính a/ b./ c/ ∫ lnx dx. Giải: Lời giải học sinh đã chính xác hoá. VD10: Tính a/ ∫x2 cos x dx Giải: Lời giải của học sinh đã chính xác hoá. Lập bảng : u dv 4. HĐ7: Củng cố: - Yêu cầu học sinh nhắc lại : + Định nghĩa nguyên hàm hàm số + Phương pháp tính nguyên hàm bằng cách đảo biến số và phương pháp nguyên hàm từng phần . 5. Hướng dẫn học bài ở nhà: Nắm vững các cách tính nguyên hàm của hàm số Làm các bài tập SGK và SBT. Tiết 51; 52 BÀI TẬP PHẦN NGUYÊN HÀM I. Mục đích yêu cầu : 1/ Kiến thức : Nắm được khái niệm nguyên hàm có một hệ số . Biết các tính chất cơ bản của nguyên hàm . 2/ Kỹ năng : Tìm được nguyên hàm của một hàm số đơn giản dựa vào bảng ng.hàm 1 cách tìm nguyên hàm từng phần Sử dụng phương pháp đổi biến số để tính nghàm 3/ Tư duy, thái độ : Thấy được mlg giữa nguyên hàm 1 đạo hàm . Rèn luyện tính cảm nhận, chính xác. II. Chuẩn bị : GV. - Bảng phụ, sgk, gán, phiếu học tập . HS. - học thuộc bảng hàm & làm BTVN. III.Phương pháp: đàm thoại, vấn đáp, thảo luận nhóm IV.Tiến trình bài học : 1, Ổn định lớp 2, KTBC (10 ‘) HS1 : Bảng hàm ( ghi bảng phụ ) HS2: Chữa bài 2c sgk GV NX, ghi điểm cho học sinh 3, Luyện tập ( 33’) HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS GHI BẢNG Hđ1 : Nắm vững nguyên hàm Hđtp 1 : Tiếp cận nguyên hàm gọi từng học sinh trả lời miệng và giải thích lí do bài 1 SGK Hđtp 2: Hình thành kỹ năng tìm ng.hàm Bài 2 : Cho học sinh thảo luận nhóm các câu a, b, c, d, e, g, h có thể hướng dẫn cho học sinh câu d sử dụng công thức đổi từ tích đến tổng hướng dẫn câu h: Hđ2 : Sử dụng phân số đổi biến số Hđtp 1 : Vận dụng địa lý để làm bài tập , gọi 2 hs lên bảng làm câu 3a,b SGK 4, HDVN : (2’) - Nắm vững bảng nghàm & biết cách tìm nghàm bằng phân số đổi biến số . - BTVN : 3c, d, : 4 SGK . + Bài tập thêm : 1/ CMR Hàm số F ( x) = ln là nguyên hàm của hàm số 2/ Tính a, ; b, Thảo luận nhóm Đại diện nhóm trình bày lời giải Làm việc cá nhân 2/a, b, c, HD d, HD e, tanx – x + C g, h, 3a, b, Tiết 2 : HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS GHI BẢNG Hđtp 2: Rèn luyện kỹ năng đặt biến Bài 3 c, d SGK gọi 2 học sinh lên bảng làm Hđ 3 : Rèn luyện kỹ năng đặt u, dv trong phương pháptính nguyên hàm bằng phương pháp từng phần Làm bài 4 sgk gọi 4 hs lên bảng làm Câu b : các em phải đặt 2 lần Hđ4 : Nâng cao phát biểu bài tập theo bàn có thể hướng dẫn câu a : hs làm b Hướng dẫn câu a : Làm việc cá nhân Thảo luận theo bài Áp dụng nguyên hàm từng phần 2 lần Thảo luận trong 5’ Thảo luận trong 5’ 3c, d, Bài 4 : 4, HDVN : Nắm vững bảng ng.hàm . Vận dụng linh hoạt các phương pháp tìm nghàm = 2 phân số đối biến & từng phần . BTVN : các bài tập trong SBT Phụ lục: Bảng phụ: Hãy điền vào dấu .

File đính kèm:

  • docBài 1 Nguyên Hàm + bai tap.doc.doc