Mục tiêu bài dạy:
1. Về kiến thức: khi niệm đường tiệm cận ngang, tiệm cận đứng, cch tìm tiệm cận ngang, tiệm cận đứng.
2. Về kỹ năng: biết cch tìm tiệm cận ngang, tiệm cận đứng của hàm phân thức đơn giản.
3. Về thái độ: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê, yêu khoa học.
II. Chuẩn bị củ giáo viên và học sinh:
3 trang |
Chia sẻ: manphan | Lượt xem: 2426 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Đại số - Bài 4: Đường tiệm cận, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
§4. ĐƯỜNG TIỆM CẬN
Ngày soạn: 13/09/2008 Tiết PPCT: Tiết 9;10
I. Mục tiêu bài dạy:
1. Về kiến thức: khi niệm đường tiệm cận ngang, tiệm cận đứng, cch tìm tiệm cận ngang, tiệm cận đứng.
2. Về kỹ năng: biết cch tìm tiệm cận ngang, tiệm cận đứng của hàm phân thức đơn giản.
3. Về thái độ: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê, yêu khoa học.
II. Chuẩn bị củ giáo viên và học sinh:
Giáo viên: Soạn bài, chuẩn bị tranh minh họa, hệ thống câu hỏi gợi mở.
Học sinh: Xem trước bài học; nắm vững kiến thức về giới hạn; chuẩn bị bài tập.
II. Phương pháp:
- Thuyết trình, kết hợp vấn đáp gợi mở, minh họa trực quan.
- Phương tiện dạy học: SGK; tranh vẽ (chuẩn bị trước).
III. Tiến trình bài dạy: Lý thuyết, Luyện tập: Tiết 9; Bài tập: Tiết 10.
Hoạt động của giáo viên
Hoạt động của học sinh
Tiết 9.
I. Đường tiệm cận ngang: (18 phút).
1) Hoạt động 1: Quan sát, nhận xét:
a) Gv yêu cầu Hs quan sát đồ thị của hàm số y = (H16, SGK, trang 27) và nêu nhận xét về khoảng cách MH từ điểm M(x; y) Î (C) tới đường thẳng y = -1 khi |x| ® + ¥.
b) Gv giới thiệu với Hs vd 1 (SGK, trang 27, 28) để Hs nhận thức một cách chính xác hơn về khái niệm đường tiệm cận ngang được giới thiệu ngay sau đây:
2) Định nghĩa đường tiệm cận ngang:
a) Nêu định nghĩa: (sgk)
b) Gv giới thiệu với VD2 (SGK, trang 29) để Hs hiểu rõ định nghĩa vừa nêu.
II. Tiệm cận đứng: (20 phút)
1) Hoạt động 2:
CH: Tính và nêu nhận xét về khoảng cách từ M(x; y) Î (C) đến đường thẳng x = 0 (trục tung) khi x ® 0? (H17, SGK, trang 28)
2). Định nghĩa đường tiệm cận đứng:
a) Nêu định nghĩa: (sgk).
b) Hướng dẫn Hs giải các BTVD3,4 (SGK, trang 29, 30) để Hs hiểu rõ định nghĩa vừa nêu.
III. Củng cố: (7 phút).
+ Gv nhắc lại các khái niệm và cách tìm các loại đường tiệm cận đứng, tiệm cận ngang để Hs khắc sâu kiến thức.
+ Dặn BTVN: 1, 2, SGK, trang 30.
Tiết 10. Chữa bài tập
I. Bài cũ: (8 phút).
CH1: Nêu định nghĩa (cách tìm) tiệm cận đứng của đồ thị hàm số y = f(x)?
CH2: Nêu định nghĩa (cách tìm) tiệm cận ngang của đồ thị hàm số y = f(x)?
II. Chữa bài tập 1(sgk): (15 phút).
+ cho 4 HS lên bảng giải.
+ Giáo viên hướng dẫn lớp kiểm tra và sửa chữa.
III. Chữa bài tập 2 (sgk): (17 phút)
+ cho 4 HS lên bảng giải.
+ Giáo viên hướng dẫn lớp kiểm tra và sửa chữa.
IV. Dặn dò: (5 phút)
+ Ôn tập các kiến thức đã học.
+ Tiết 11 kiểm tra 1 tiết.
I. Đường tiệm cận ngang:
1) Thảo luận để và nêu nhận xét về khoảng cách từ điểm M(x; y) Î (C) tới đường thẳng y = -1 khi |x| ® + ¥.
+) Kết quả ở H16:
;
;
+) Kết quả VD1:
;
2) Định nghĩa :
a) HS nắm nội dung đ/n:
Cho hàm số y = f(x) xác định trên một khoảng vô hạn (là khoảng dạng: (a; + ¥), (- ¥; b) hoặc (- ¥; + ¥)). Đường thẳng y = y0 là tiệm cận ngang của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thoả mãn:
; .
b) Ví dụ:
Vậy y =1 là đường tiệm cận ngang của ĐT HS.
II. Tiệm cận đứng:
1) Thảo luận để:
+ Tính giới hạn:
Kết quả: ;
+ Nêu nhận xétt về khoảng cách từ M(x; y) Î (C) đến đường thẳng x = 0 (trục tung) khi x ® 0. (H17, SGK, trang 28).
Kết quả: ;
2) Định nghĩa:
a) Nắm nội dung đ/n (sgk):
Đường thẳng x = x0 được gọi là tiệm cận đứng của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thoả mn:
b) Các ví dụ:
+) VD3:Tìm các đường tiệm cận đứng và ngang của đồ thị (C) của các hàm số: ;
Giải:Txđ: D = R\{-2}
x =-2 là tiệm cận đứng của (C)
y = 1 là tiệm cận ngang của (C).
+) VD4: Tìm tiệm cận đứng của đồ thị (C) của hàm số:
Giải: Txđ: D = R\{3/2}.
là tiệm cận đứng.
I. Bài cũ:
Yêu cầu HS nắm vững định nghĩa (cách tìm) các đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số.
BT1:
a) Tiệm cận đứng là x = 2; Tiệm cận ngang là y = -1.
b) Tiệm cận đứng là x = -1; Tiệm cận ngang là y = -1.
c) Tiệm cận đứng x = 2/5; Tiệm cận ngang y = 2/5.
d) Tiệm cận đứng là x = 0; Tiệm cận ngang là y = -1.
BT2:
a) Có 2 tiệm cận đứng là x = 3; x = -3
Tiệm cận ngang là y = 0.
b) Có 2 tiệm cận đứng là x = -1; x = 3/5
Tiệm cận ngang là y = -1/5.
c) Tiệm cận đứng là x = -1; không có TC ngang.
d) Có 2 tiệm cận đứng là x = -1; x = 1
Tiệm cận ngang là y = 1.
File đính kèm:
- BAI 4 TIEM CAN.doc