Giáo án lớp 12 môn đại số - Giải tích

 1/Về kiến thức:+ Nắm được các khái niệm luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa của một số thực dương .

 +Nắm được các tính chất của luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa với số mũ thực .

 2/Về kỹ năng : + Biết dùng các tính chất của luỹ thừa để rút gọn biểu thức, so sánh các biểu thức có chứa luỹ thừa .

 

doc24 trang | Chia sẻ: manphan | Lượt xem: 838 | Lượt tải: 1download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án lớp 12 môn đại số - Giải tích, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tiết : 24+25 LUỸ THỪA Ngày soạn:18/10/2008 I.Mục tiêu : 1/Về kiến thức:+ Nắm được các khái niệm luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa của một số thực dương . +Nắm được các tính chất của luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa với số mũ thực . 2/Về kỹ năng : + Biết dùng các tính chất của luỹ thừa để rút gọn biểu thức, so sánh các biểu thức có chứa luỹ thừa . 3/Về tư duy và thái độ :+Từ khái niệm luỹ thừa với số nguyên dương xây dựng khái niệm luỹ thừa với số mũ thực. +Rèn luyện tư duy logic, khả năng mở rộng , khái quát hoá .II.Chuẩn bị của giáo viên và học sinh : +Giáo viên : Giáo án , bảng phụ . +Học sinh :SGK và kiến thức về luỹ thừa đã học ở cấp 2 . III.Phương pháp : +Phối hợp nhiều phương pháp nhằm phát huy tính tích cực của học sinh +Phương pháp chủ đạo : Gợi mở nêu vấn đề . IV.Tiến trình bài học : Ổn định lớp : Kiểm tra bài cũ : Câu hỏi 1 : Tính Câu hỏi 2 : Nhắc lại định nghĩa luỹ thừa bậc n của a (n) 3.Bài mới : Hoạt động 1 : Hình thành khái niệm luỹ thừa . HĐTP 1 : Tiếp cận định nghĩa luỹ thừa với số mũ nguyên . Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng Câu hỏi 1 :Với m,n =? (1) =? (2) =? Câu hỏi 2 :Nếu m<n thì công thức (2) còn đúng không ? Ví dụ : Tính ? -Giáo viên dẫn dắt đến công thức : -Giáo viên khắc sâu điều kiện của cơ số ứng với từng trường hợp của số mũ -Tính chất. -Đưa ra ví dụ cho học sinh làm - Phát phiếu học tập số 1 để thảo luận . -Củng cố,dặn dò. -Bài tập trắc nghiệm. -Hết tiết 1. +Trả lời. , +A = - 2 +Nhận phiếu học tập số 1 và trả lời. I.Khái niện luỹ thừa : 1.Luỹ thừa với số mũ nguyên : Cho n là số nguyên dương. n thừa số Với a0 Trong biểu thức am , ta gọi a là cơ số, số nguyên m là số mũ. CHÚ Ý : không có nghĩa. Luỹ thừa với số mũ nguyên có các tính chất tương tự của luỹ thừa với số mũ nguyên dương . Ví dụ1 : Tính giá trị của biểu thức HĐTP 2 :Dựa vào đồ thị biện luận số nghiệm của pt xn = b Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng -Treo bảng phụ : Đồ thị của hàm số y = x3 và đồ thị của hàm số y = x4 và đường thẳng y = b CH1:Dựa vào đồ thị biện luận theo b số nghiệm của pt x3 = b và x4 = b ? -GV nêu dạng đồ thị hàm số y = x2k+1 và y = x2k CH2:Biện luận theo b số nghiệm của pt xn =b Dựa vào đồ thị hs trả lời x3 = b (1) Với mọi b thuộc R thì pt (1) luôn có nghiệm duy nhất x4=b (2) Nếu b<0 thì pt (2) vô nghiêm Nếu b = 0 thì pt (2) có nghiệm duy nhất x = 0 Nếu b>0 thì pt (2) có 2 nghiệm phân biệt đối nhau . -HS suy nghĩ và trả lời 2.Phương trình : a)Trường hợp n lẻ : Với mọi số thực b, phương trình có nghiệm duy nhất. b)Trường hợp n chẵn : +Với b < 0, phương trình vô nghiệm +Với b = 0, phương trình có một nghiệm x = 0 ; +Với b > 0, phương trình có 2 nghiệm đối nhau . HĐTP3:Hình thành khái niệm căn bậc n Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Nghiệm nếu có của pt xn = b, với n2 được gọi là căn bậc n của b CH1: Có bao nhiêu căn bậc lẻ của b ? CH2: Có bao nhiêu căn bậc chẵn của b ? -GV tổng hợp các trường hợp. Chú ý cách kí hiệu Ví dụ : Tính ? CH3: Từ định nghĩa chứng minh = -Đưa ra các tính chất căn bậc n . -Ví dụ : Rút gọn biểu thức a) b) +Củng cố,dặn dò. +Bài tập trắc nghiệm. +Hết tiết 2. HS dựa vào phần trên để trả lời . HS vận dụng định nghĩa để chứng minh. Tương tự, học sinh chứng minh các tính chất còn lại. Theo dõi và ghi vào vở HS lên bảng giải ví dụ 3.Căn bậc n : a)Khái niệm : Cho số thực b và số nguyên dương n (n2). Số a được gọi là căn bậc n của b nếu an = b. Từ định nghĩa ta có : Với n lẻ và bR:Có duy nhất một căn bậc n của b, kí hiệu là Với n chẵn và b<0: Không tồn tại căn bậc n của b; Với n chẵn và b=0: Có một căn bậc n của b là số 0; Với n chẵn và b>0: Có hai căn trái dấu, kí hiệu giá trị dương là , còn giá trị âm là . b)Tính chất căn bậc n : khi n lẻ khi n chẵn HĐTP4: Hình thành khái niệm luỹ thừa với số mũ hữu tỉ Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng -Với mọi a>0,mZ,n luôn xác định .Từ đó GV hình thành khái niệm luỹ thừa với số mũ hữu tỉ. -Ví dụ : Tính ? -Phát phiếu học tập số 2 cho học sinh thảo luận Học sinh giải ví dụ Học sinh thảo luận theo nhóm và trình bày bài giải 4.Luỹ thừa với số mũ hữu tỉ Cho số thực a dương và số hữu tỉ , trong đó Luỹ thừa của a với số mũ r là ar xác định bởi HĐTP5: Hình thành khái niệm lũy thừa với số mũ vô tỉ Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho a>0, là số vô tỉ đều tồn tại dãy số hữu tỉ (rn) có giới hạn là và dãy () có giới hạn không phụ thuộc vào việc chọn dãy số (rn). Từ đó đưa ra định nghĩa. Học sinh theo dõi và ghi chép. 5.Luỹ thừa với số mũ vô tỉ: SGK Chú ý: 1= 1, R : Hoạt động 2: Tính chất của lũy thừa với số mũ thực HĐTP1: Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Nhắc lại tính chất của lũy thừa với số mũ nguyên dương. - Giáo viên đưa ra tính chất của lũy thừa với số mũ thực, giống như tính chất của lũy thừa với số mũ nguyên dương -Bài tập trắc nghiệm. Học sinh nêu lại các tính chất. II. Tính chất của luỹ thừa với số mũ thực: SGK Nếu a > 1 thì kck Nếu a < 1thì kck 4.Củng cố: +Khái niệm: nguyên dương , có nghĩa a. hoặc = 0 , có nghĩa . số hữu tỉ không nguyên hoặc vô tỉ , có nghĩa . +Các tính chất chú ý điều kiện. +Bài tập về nhà:-Làm các bài tập SGK trang 55,56. Tiết 26 BÀI TẬP LŨY THỪA Ngày soạn :24 /10/2008 I. Mục tiêu : + Về kiến thức : Nắm được định nghĩa lũy thừa với số mũ nguyên , căn bậc n ,lũy thừ với số mũ hữu tỉ + Về kỹ năng : Biết cách áp dụng các tính chất của lũy thừa với số mũ thực để giải toán + Về tư duy thái độ : Rèn luyện tính tự giác luyện tập để khắc sâu kiến thức đã học II. Chuẩn bị của giáo viên và học sinh : + Giáo viên : Giáo án , phiếu học tập , bảng phụ ( Nếu có) + Học sinh :Chuẩn bị bài tập III. Phương pháp : Đàm thoại – Vấn đáp IV. Tiến trình bài học : 1/ Ổn định tổ chức 2/ Kiểm tra bài cũ 3/ Bài mới : Hoạt động 1 : Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng + Các em dùng máy tính bỏ túi tính các bài toán sau + Kiểm tra lại kết quả bằng phép tính +Gọi học sinh lên giải +Cho học sinh nhận xét bài làm của bạn + Giáo viên nhận xét , kết luận + Cả lớp cùng dùng máy ,tính các câu bài 1 + 1 học sinh lên bảng trình bày lời giải Bài 1 : Tính a/ b/ c/ Hoạt động 2 : Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng + Nhắc lại định nghĩa lũy thừa với số mũ hữu tỉ +Vận dụng giải bài 2 + Nhận xét + Nêu phương pháp tính + Sử dụng tính chất gì ? + Viết mỗi hạng tử về dạng lũy thừa với số mũ hữu tỉ + Tương tự đối với câu c/,d/ + Học sinh lên bảng giải + Nhân phân phối + T/c : am . an = am+n + Bài 2 : Tính a/ b/ c/ d/ Bài 3 : a/ b/ d/ Hoạt động 3 : Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng + Gọi hs giải miệng tại chỗ + Học sinh trả lời Bài 4: a) 2-1 , 13,75 , b) 980 , 321/5 , + Nhắc lại tính chất a > 1 0 < a < 1 + Gọi hai học sinh lên bảng trình bày lời giải x > y x < y Bài 5: CMR a) 4) Củng cố toàn bài : Tiết: 27 HÀM SỐ LUỸ THỪA Ngày soạn: 25/10/2008 I) Mục tiêu - Về kiến thức :Nắm được khái niệm hàm số luỹ thừa , tính được đạo hàm cuả hàm số luỹ thừa vµ khảo sát hàm số luỹ thừa -Về kĩ năng : Thành thạo các bước tìm tập xác định , tính đạo hàm và các bước khảo sát hàm số luỹ thừa - Về tư duy , thái độ: Biết nhận dạng bài tập Cẩn thận,chính xác II) Chuẩn bị Giáo viên :Giáo án , bảng phụ Học sinh : ôn tập kiên thức,sách giáo khoa. III) Phương pháp : Hoạt động nhóm + vấn đáp + nêu và giải quyết vấn đề IV) Tiến trình bài học: 1) Ổn định lớp :(2’) 2) Kiểm tra bài cũ: Nhắc lại các quy tắc tính đạo hàm 3) Bài mới: * Hoạt động 1: Khái niệm 15’ Hoạt động của giáo viên Hoạt động của sinh Nội dung ghi bảng Thế nào là hàm số luỹ thừa , cho vd minh hoạ?. - Giáo viên cho học sinh cách tìm txđ của hàm số luỹ thừa cho ở vd ;a bất kỳ . -Kiểm tra , chỉnh sửa Trả lời. HS lấy Vd : - Phát hiện tri thức mới - Ghi bài HS tự giải VD2 : Tìm TXĐ của các hàm số ở VD1 I)Khái niệm : Hàm số y= R gọi là hàm số luỹ thừa * Chú ý Tập xác định của hàm số luỹ thừa y= tuỳ thuộc vào giá trị của - nguyên dương ; D=R + + a không nguyên; D = (0;+) Hoạt động 2: Đạo hàm của Hàm số luỹ thừa Hoạt động của giáo viên Hoạt động của sinh Nội dung ghi bảng Nhắc lai quy tắc tính đạo hàm của hàm số - Dẫn dắt đưa ra công thức tương tự - Khắc sâu cho hàm số công thức tính đạo hàm của hàm số hợp Trả lời kiến thức cũ - ghi bài - ghi bài - chú ý - làm vd II) Đạo hàm cuả hàm số luỹ thừa VD: *Chú ý: Hoạt động 3 Khảo sát hàm số luỹ thừa Hoạt động của giáo viên Hoạt động của sinh Nội dung ghi bảng - Giáo viên nói sơ qua khái niệm tập khảo sát - Hãy nêu lại các bước khảo sát sự biến thiên và vẽ đồ thị hàm số bất kỳ - Chỉnh sửa - Chia lớp thành 2 nhóm gọi đại diện lên khảo sát hàm số : ứng với0 - Sau đó giáo viên chỉnh sửa , tóm gọn vào nội dung bảng phụ. - H: em có nhận xét gì về đồ thị của hàm số - Giới thiệu đồ thị của một số thường gặp : -Hoạt động HS Vd3 SGK, sau đó cho VD yêu cầu học sinh khảo sát -Học sinh lên bảng giải - Hãy nêu các tính chất của hàm số luỹ thừa trên - Dựa vào nội dung bảng phụ - Chú ý - Trả lời các kiến thức cũ - Đại diện 2 nhóm lên bảng khảo sát theo trình tự các bước đã biết - ghi bài - chiếm lĩnh trị thức mới - TLời : (luôn luôn đi qua điểm (1;1) -Chú ý -Nắm lại các baì làm khảo sát -Theo dõi cho ý kiến nhận xét -Nêu tính chất - Nhận xét III) Khảo sát hàm số luỹ thừa * Chú ý : khi khảo sát hàm số luỹ thừa với số mũ cụ thể , ta phải xét hàm số đó trên toàn bộ TXĐ của nó Vd : Khảo sát sự biến thiên và vẽ đồ thi hàm số - - Sự biến thiên <0Hàm số luôn nghịch biến trênD TC : ; Đồ thị có tiệm cận nganglà Ox, tiệm cận đứng là Oy BBT : x - + - y + 0 Đồ thị: 4) Củng cố - Nhắc lại các bước khảo sát sự biến thiên và vẽ đồ thị hàm số và các hàm số của nó . -Kiểm tra lại sự tiếp thu kiến thức qua bài học . 5> Dặn dò : - Học lý thuyết - Làm các bài tập Tiết 28 BÀI TẬP HÀM SỐ LUỸ THỪA Ngày soạn: 26/10/2008 I. MỤC TIÊU 1/Về kiến thức:- Củng cố khắc sâu: +Tập xác định của hàm số luỹ thừa +Tính được đạo hàm của hàm số luỹ thừa +Các bước khảo sát hàm số luỹ thừa 2/ Về kỹ năng : +Tìm tập xác định +Tính đạo hàm +Khảo sát và vẽ đồ thị của hàm số luỹ thừa 3/Về tư duy ,thái độ - Cẩn thận ,chính xác II. CHUẨN BỊ -Giáo viên: giáo án -Học sinh : làm các bài tập III. PHƯƠNG PHÁP Hỏi đáp: nêu và giải quyết vấn đề IV. TIẾN TRÌNH BÀI HỌC 1/ Ổn định lớp (2’ ) 2/ Kiểm tra bài cũ ( 8’ ) Hãy nêu khái niệm hàm số luỹ thừa ? Cho biết tập xác định của hàm số luỹ thừa ? Áp dụng : Tìm tập xác định của hàm số y = ( x2 - 4 ) -2 3/ Bài mới : “ BÀI TẬP HÀM SỐ LUỸ THỪA ” HĐ1:Tìm tập xác định của hàm số luỹ thừa (1/60 SGK ) HĐ Giáo viên HĐ của học sinh Ghi bảng - Lưu ý học sinh cách tìm tập xác định của hàm số luỹ thừa y=xa + a nguyên dương : D=R D=R\ + a không nguyên : D=, - Gọi lần lượt 4 học sinh đứng tại chỗ trả lời - Nhận định đúng các trường hợp của a -Trả lời -Lớp theo dõi bổ sung 1/60 Tìm tập xác định của các hàm số: y= TXĐ : D= y= TXĐ :D= c) y= TXĐ: D=R\ d) y= TXĐ : D= *HĐ2 : Tính đạo hàm của các hàm số ( 2/6 sgk ) HĐ Giáo viên HĐ của hs Ghi bảng - Hãy nhắc lại công thức (ua ) - Gọi 2 học sinh lên bảng làm câu a ,c -Nhận xét , sửa sai kịp thời - Trả lời kiến thức cũ H1, H2 :giải 2/61 Tính đạo hàm của các hàm số sau a) y= y’= b)y= y’= *HĐ3 ;khảo sát sự biến thiên và vẽ đồ thị của hàm số (3/61sgk) - Nêu các bước khảo sát sự biến thiên và vẽ đồ thị của hàm số ? - Gọi 2 học sinh làm bài tập (3/61) GViên nhận xét bổ sung -Học sinh trả lời H3,H4 giải - Lớp theo dõi bổ sung HS theo dõi nhận xét HS lập bảng biến thiên 3/61 Khảo sát sự biến thiên và vẽ đồ thị hàm số: a) y= . TXĐ :D=(0; +) . Sự biến thiên : . y’=>0 trên khoảng (0; +) nên h/s đồng biến . Giới hạn : b) y = x-3 * TXĐ :D=R\ { 0} *Sự biến thiên : - y’ = - y’<0 trên TXĐ nên h/s nghịch biến trên từng khoảng xác định (- ;0), (0 ; + ) *Giới hạn : Đồ thị có tiệm cận ngang là trục hoành , tiệm cận đứng là trục tung Đồ thị : 4/ Củng cố : - Phát phiếu học tập để kiếm tra lại mức độ hiểu bài của h/s. 5/ Dặn dò : . Học bài . Làm các bài tập còn lại Sgk Tiết: 29 LÔGARIT Ngày soạn: 30/10/2008 I) Mục tiêu: 1) Về kiến thức : - Biết khái niệm lôgarit cơ số a (a > 0, a1) của một số dương - Biết các tính chất của logarit (so sánh hai lôgarit cùng cơ số, qui tắc tính lôgarit) 2) Về kỹ năng: - Biết vận dụng định nghĩa để tính một số biểu thức chứa lôgarit đơn giản - Biết vận dụng các tính chất của lôgarit vào các bài tập biến đổi, tính toán các biểu thức chứa lôgarit 3) Về tư duy và thái độ: - Tích cực tham gia vào bài học có tinh thần hợp tác - Biết qui lạ về quen. Rèn luyện tư duy lôgic II) Chuẩn bị của GV và HS GV: Giáo án HS: SGK, giải các bài tập về nhà và đọc qua nội dung bài mới ở nhà III) Phương pháp : Gợi mở, vấn đáp. IV) Tiến trìnnh bài học: 1) Ổn định: (1’) 2) Kiểm tra bài cũ : (4’) Câuhỏi1: Phát biểu khái niệm hàm số lũy thừa Câuhỏi2: Phát biểu và viết lại biểu thức biểu diễn định lý về cách tính đạo hàm của hàm số lũy thừa, hàm số chứa căn thức bậc n Bài mới: Họat động 1: Khái niệm về lôgarit 1) Định nghĩa Hoạt động của GV Hoạt động của HS Ghi Bảng GV định hướng HS nghiên cứu định nghĩa lôgarit bằng việc đưa ra bài toán cụ thể Tìm x biết : 2x = 8 2x = 3 Dẫn dắt HS đến định nghĩa SGK, GV lưu ý HS: Trong biểu thức cơ số a và biểu thức lấy logarit b phải thõa mãn : HS tiến hành nghiên cứu nội dung ở SGK - HS trả lời a) x = 3 b) x = ? chú ý GV hướng dẫn HS tiếp thu ghi nhớ I) Khái niệm lôgarit: 1) Định nghĩa: Cho 2 số dương a, b với a 1. Số thỏa mãn đẳng thức được gọi là lôgarit cơ số a của b và kí hiệu là Cho số thực b, giá trị thu được khi nâng nó lên lũy thừa cơ số a rồi lấy lôgarit cơ số a? Cho số thực b dương giá trị thu được khi lấy lôgarit cơ số a rồi nâng nó lên lũy thừa cơ số a ? Yêu cầu HS xem 2vd sgk Tính các biểu thức: = ?, = ? = ?, = ? (a > 0, b > 0, a 1) HS rút ra kết luận. Phép lấy lôgarit là phép ngược của phép nâng lên lũy thừa HS thực hiện yêu cầu của GV 2. Tính chất: Với a > 0, b > 0, a 1 Ta có tính chất sau: = 0, = 1 = b, = VD1 VD2 SGK Họat động 2: Qui tắc tính lôgarit 1) Lôgarit của 1 tích Hoạt động của GV Hoạt động của HS Ghi Bảng GV nêu nội dung của định lý 1 và yêu cầu HS chứng minh định lý 1 GV định hướng HS chứng minh các biểu thức biểu diễn các qui tắc tính logarit của 1 tích. Yêu cầu HS xem vd3 SGK trang63. Chú ý : định lý mở rộng HS thực hiện dưới sự hướng dẫn của GV : Đặt = m, = n Khi đó + = m + n và = = = = m + n II. Qui tắc tính lôgarit 1. Lôgarit của một tích Định lý 1: Cho 3 số dương a, b1, b2 với a1, ta có : = + Chú ý: (SGK) 2) Lôgarit của một thương: Hoạt động của GV Hoạt động của HS Ghi Bảng GV nêu nội dung định lý 2 và yêu cầu HS chứng minh tương tự định lý 1 Yêu cầu HS xem vd 4 SGK trang 64 HS tiếp thu định lý 2 và thực hiện dưới sự hướng dẫn của GV HS thực hiện theo yêu cầu của GV 2. Lôgarit của một thương Định lý2: Cho 3 số dương a, b1, b2 với a1, ta có : = - 3) Lôgarit của một lũy thừa: Hoạt động của GV Hoạt động của HS Ghi Bảng -GV nêu nội dung định lý3 và yêu cầu HS chứng minh định lý 3 - HS tiếp thu định lý và thực hiện yêu cầu của GV 3. Lôgarit của một lũy thừa Định lý 3: Cho 2 số dương a, b với a 1. Với mọi số , ta có Hoạt động của GV Hoạt động của HS Ghi Bảng Yêu cầu HS xem vd5 SGK trang 65 GV phát phiếu học tập số 3 và hướng dẫn HS làm bài tập ở phiếu học tập số 3 Áp dụng công thức: =+ Để tìm A . Áp dụng công thức = và =+ để tìm B HS thực hiện theo yêu cầu của GV -2 HS làm 2 biểu A, B trên bảng - HS khác nhận xét Đặc biệt: *) Đáp án phiếu học tập số 3 A = = = B = = = = 4) Củng cố - GV tóm tắt lại các vấn đề trọng tâm của bài học : 1. Định nghĩa, các công thức biểu diễn tính chất của lôgarit và các hệ quả suy ra từ các tính chất đó 2. Các biểu thức biểu diễn qui tắc tính lôgarit( lôgarit của một tích, lôgarit của một thương và lôgarit của một lũy thừa) 3. Hướng dẫn học bài và làm bài tập ở nhà SGK trang 68 Tiết 30 LÔGARIT Ngày soạn: 30/10/2008 I) Mục tiêu: 1) Về kiến thức : - Biết cách tính lôgarit, đổi cơ số lôgarit - Biết các khái niệm lôgarit thập phân, số e và lôgarit tự nhiên 2) Về kỹ năng: - Biết vận dụng các tính chất của lôgarit vào các bài tập biến đổi, tính toán các biểu thức chứa lôgarit 3) Về tư duy và thái độ: - Tích cực tham gia vào bài học có tinh thần hợp tác - Biết qui lạ về quen. Rèn luyện tư duy lôgic II) Chuẩn bị của GV và HS III) Phương pháp : Gợi mở, vấn đáp IV) Tiến trìnnh bài học: 1) Ổn định: (1’) 2) Kiểm tra bài cũ : (4’) Câuhỏi1: Phát biểu các tính chát và quy tắc tính lôgarit. 3) Bài mới: Họat động1: Đổi cơ số của lôgarit Hoạt động của GV Hoạt động của HS Ghi Bảng GV nêu nội dung của định lý 4 và hướng dẫn HS chứng minh GV : cho a = tính log41250 theo a. Áp dụng công thức để chuyển lôgarit cơ số 4 về lôgarit cơ số 2 . Áp dụng công thức HS tiếp thu, ghi nhớ HS tiến hành làm phiếu học tập số 4 dưới sự hướng dẫn của GV Đại diện 1 HS trình bày trên bảng HS khác nhận xét III. Đổi cơ số Định lý 4: Cho 3 số dương a, b, c với ta có Đặc biệt: (b) *) Đáp án = = = = =+ tính theo Áp dụng : GV hướng dẫn HS nghiên cứu các vd 6,7,8,9 SGK trang 66-67 - HS thực hiện theo yêu cầu của GV Hoạt động 2: Lôgarit thập phân – Lôgarit tự nhiên Hoạt động của GV Hoạt động của HS Ghi Bảng GV nêu định nghĩa lôgarit thập phân và lôgarit tự nhiên cơ số của lôgarit thập phân và lôgarit tự nhiên lớn hơn hay bé hơn 1 ? Nó có những tính chất nào ? GV ra đề A= 2- lg3 B= 1+ lg8-lg2 HD: Viết 2 dưới dạng lôgarit thập phân của một số rồi áp dụng công thức =- để tính A Viết 1 dưới dạng lôgarit thập phân của 1 số rồi áp dụng công thức =+ và = - để tính B So sánh HS tiếp thu , ghi nhớ Lôgarit thập phân là lôgarit cơ số 10 tức nó có cơ số lớn hơn 1 Lôgarit tự nhiên là lôgarit cơ số e tức nó có cơ số lớn hơn 1 Vì vậy logarit thập phân và lôgarit tự nhiên có đầy đủ tính chất của lôgarit với cơ số lớn hơn 1 HS thực hiện theo yêu cầu của GV Đại diện 1 HS trình bày trên bảng HS khác nhận xét IV. Lôgarit thập phân- Lôgarit tự nhiên Lôgarit thập phân: là lôgarit cơ số 10 được viết là logb hoặc lgb Lôgarit tự nhiên : là lôgarit cơ số e được viết là lnb *) Đáp án A = 2 – lg3 = 2lg10 – lg3 = lg102 – lg3 = lg100 – lg3 = lg B = 1 + lg8 - lg2 = lg10 + lg8 - lg2 = lg = lg40 Vì 40 > nên B > A 4) Củng cố toàn bài - GV tóm tắt lại các vấn đề trọng tâm của bài học : 1. Định nghĩa, các công thức biểu diễn tính chất của lôgarit và các hệ quả suy ra từ các tính chất đó 2. Các biểu thức biểu diễn qui tắc tính lôgarit( lôgarit của một tích, lôgarit của một thương và lôgarit của một lũy thừa) 3. Các biểu thức đổi cơ số của lôgarit. Định nghĩa lôgarit thập phân và lôgarit tự nhiên 4. Hướng dẫn học bài và làm bài tập ở nhà SGK trang 68 Tiết 31 BÀI TẬP LÔGARIT Ngày soạn: 04/11/2008 I) Mục tiêu: 1) Về kiến thức : - Giúp HS hệ thống lại kiến thức đã học về lôgarit trên cơ sở đó áp dụng vào giải các bài tập cụ thể - Rèn luyện kĩ năng vận dụng lí thuyết vào việc giải bài tập cho HS 2) Về kỹ năng: - Áp dụng được các công thức vào từng dạng bài tập cụ thể - Rèn luyện kĩ năng biến đổi. 3) Về tư duy và thái độ: - Rèn luyện khả năng tư duy sáng tạo cho HS thông qua các bài tập từ đơn giản đến phức tạp - Khi giải bài tập cần tính cẩn thận chính xác II) Chuẩn bị của GV và HS GV: Giáo án HS: Học bài cũ và làm bài tập SGK III) Phương pháp : - Gợi mở, vấn đáp - Phương pháp phân tích tổng hợp thông qua các bài tập phức tạp IV) Tiến trìnnh bài học: 1)Ổn định: Kiểm tra bài cũ : Tính giá trị biểu thức: A = ; B = Bài mới: Họat động 1: Giúp học sinh nắm lại công thức về Lôgari Hoạt động của GV Hoạt động của HS Ghi Bảng GV cho HS nhận dạng công thức và yêu cầu HS đưa ra cách giải GV nhận xét và sửa chữa GV cho HS làm các bài tập. HS áp dụng công thức và trình bày lên bảng HS trao đổi thảo luận nêu kết quả 1) A = 2) x = 512 3) x = Bài1 a) b) c) d) Bài 2 a) b) c) d) Hoạt động 2: Vận dụng công thức rèn luyện kĩ năng giải bài tập cơ bản cho HS Hoạt động của GV Hoạt động của HS Ghi Bảng GV yêu cầu HS nhắc lại các công thức lôgarit HS tính giá trị A, B HS - - - - - A = = B = = Hoạt động 3: Rèn luyện khả năng tư duy của HS qua các bài tập nâng cao Hoạt động của GV Hoạt động của HS Ghi Bảng GV cho HS nhắc lại tính chất của lũy thừa với số mũ thực GV gọi HS trình bày cách giải - a >1, - a < 1, HS trình bày lời giải a) Đặt = , = Ta có Vậy > b) < Bài 3(4/68SGK) So sánh a) và b) và GV gọi HS nhắc lại công thức đổi cơ số của lôgarit GV yêu cầu HS tính theo C từ đó suy ra kết quả GV cho HS trả lời HS HS áp dụng HS sinh trình bày lời giải lên bảng Bài4(5b/SGK) Cho C = . Tính theo C Tacó Mà C = == Vậy = 4) Củng cố : - Nhắc lại cách sử dụng công thức để tính giá trị biểu thức - So sánh hai lôgarit 5) Bài tập về nhà : Các bài còn lại trong SGK Ngày soạn: 03/112008 Tiết:32 HÀM SỐ MŨ. I. Mục tiêu: + Về kiến thức: - Biết khái niệm và tính chất của hàm mũ. - Biết công thức tính đạo hàm các hàm số mũ và hàm số hợp của nó. - Biết dạng đồ thị của hàm mũ. + Về kỹ năng: - Biết vận dụng tính chất các hàm mũ vào việc so sánh hai số, hai biểu thức chứa mũ. - Biết vẽ đồ thị hàm số lũy thừa, hàm số mũ - Tính được đạo hàm hàm số y = ex + Về tư duy và thái độ: - Rèn luyện tính khoa học, nghiêm túc. - Rèn luyện tính tư duy, sáng tạo. - Vận dụng được các kiến thức đã học vào giải các bài toán. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Giáo án, bảng phụ, các phương tiện dạy học cần thiết. + Học sinh: SGK, giấy bút, phiếu trả lời. III. Phương pháp: Đặt vấn đề IV. Tiến trình bài học: 1. Ổn định tổ chức: (1') 2. Kiểm tra bài cũ: (5') Gọi 1 HS lên bảng ghi các công thức về lôgarit Đánh giá và cho điểm và chỉnh sửa 3. Bài mới: Hoạt động 1: Dẫn đến khái niệm hàm số Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Với x = 1, x = ½ .Tính giá trị của 2x . Cho học sinh nhận xét Với mỗi xR có duy nhất giá trị 2x Nêu vd3 và cho học sinh trả lời hoạt động 1 Cho học sinh thử định nghĩa và hoàn chỉnh định nghĩa Cho học sinh trả lời HĐ2 Tính Nhận xét Nêu công thức S = Aeni A = 80.902.200 n = 7 i = 0,0147 và kết quả Định nghĩa Trả lời I/HÀM SỐ MŨ: 1)ĐN: sgk VD: Các hàm số sau là hàm số mũ: + y = ( + y = + y = 4-x Hàm số y = x-4 không phải là hàm số mũ Hoạt động 2: Dẫn đến công thức tính đạo hàm số hàm số mũ. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho học sinh nắm được Công thức: + Nêu định lý 1, cho học sinh sử dụng công thức trên để chứng minh. + Nêu cách tính đạo hàm của hàm hợp để tính (eu)' Với u = u(x). + Áp dụng để tính đạo hàm e3x , , + Nêu định lý 2 + Hướng dẫn HS chứng minh định lý 2 và nêu đạo hàm hàm hợp Cho HS vận dụng định lý 2 để tính đạo hàm các hàm số y = 2x , y = + Ghi nhớ công thức + Lập tỉ số rút gọn và tính giới hạn. HS trả lời HS nêu công thức và tính. Ghi công thức Ứng dụng công thức và tính đạo hàm kiểm tra lại kết quả theo sự chỉnh sửa giáo viên 2. Đạo hàm hàm số mũ. Ta có CT: Định lý 1: SGK Chú ý: (eu)' = u'.eu Hoạt động 3: Khảo sát hàm số y = ax (a>0;a ) Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho HS xem sách và lập bảng như SGK T73 Cho HS ứng dụng khảo sát và vẽ độ thị hàm số y = 2x GV nhận xét và chỉnh sửa. Cho HS lập bảng tóm tắt tính chất của hàm số mũ như SGK. HS lập bảng HS lên bảng trình bày bài khảo sát và vẽ đồ thị hàm số y = 2x Bảng khảo sát SGK/73 y 1 0 x 4. Củng cố toàn bài: (5') - GV nhắc lại những kiến thức cơ bản của hàm số mũ - GV nhấn mạnh tính đồng biến nghịch biến của hàm số mũ tùy thuộc vào cơ số. - Nhắc lại các công thức tính đạo hàm của hàm số lũy thừa, mũ 5. Hướng dẫn học bài ở nhà và ra bài tập ở nhà: - Làm các bài tập 1,2,3, trang 77 (SGK) Ngày soạn: 03/08/2008 Số tiết:33 HÀM SỐ LÔGARIT I. Mục tiêu: + Về kiến thức: - Biết khái niệm và tính chất của hàm lôgarit. - Biết công thức tính đạo hàm các hàm số lôgarit và hàm số hợp của nó. - Biết dạng đồ thị của hàm lôgarit. + Về kỹ năng: - Biết vận dụng tính chất hàm lôgarit vào việc so sánh hai số, hai biểu thức chứa hàm số lôgarit. - Tính được đạo hàm hàm y = lnx. + Về tư duy và thái độ: - Rèn luyện tính khoa học, nghiêm túc. - Rèn luyện tính tư duy, sáng tạo. - Vận dụng được các kiến thức đ

File đính kèm:

  • docGIAO AN CHUONG II GIAI TICH 12 DAY DU.doc