. Về kiến thức:
- HS nắm được được công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và trục Ox, các đường thẳng x = a, x = b. Hình phẳng giới hạn bởi các đồ thị hàm số y = f(x), y = g(x) và các đường thẳng x = a, x = b.
- Nắm được công thức thể tích của một vật thể nói chung
- Nắm được công thức thể tích khối tròn xoay, công thức của khối nón, khối nón cụt, khối trụ tròn xoay,khèi cÇu trong trường hợp vật thể quay xung quanh trục Ox
2. Về kỹ năng:
5 trang |
Chia sẻ: manphan | Lượt xem: 1110 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Đại số - Ứng dụng hình học của tích phân, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN
Ngày soạn 15/1/2009
Ngày dạy:
Tiết:50-53
I. Mục tiêu:
1. Về kiến thức:
- HS nắm được được công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và trục Ox, các đường thẳng x = a, x = b. Hình phẳng giới hạn bởi các đồ thị hàm số y = f(x), y = g(x) và các đường thẳng x = a, x = b.
- Nắm được công thức thể tích của một vật thể nói chung
- Nắm được công thức thể tích khối tròn xoay, công thức của khối nón, khối nón cụt, khối trụ tròn xoay,khèi cÇu trong trường hợp vật thể quay xung quanh trục Ox
2. Về kỹ năng:
- Áp dụng được công thức tính diện tích hình phẳng, thiết lập được công thức tính thể tích khối chóp, khối nón và khối nón cụt
- Ứng dụng được tích phân để tính được thể tích nói chung và thể tích khối tròn xoay nói riêng
3. Về tư duy, thái độ:
-HS tư duy làm các bài tập SGK, các BT áp dụng
- Thấy được ứng dụng rộng rãi của tích phân trong việc tính diện tích, thể tích
- Học sinh có thái độ tích cực, sáng tạo trong học tập
II. Chuẩn bị:
Giáo viên: Phiếu học tập, bảng phụ các hình vẽ SGK
Học sinh: Làm bài tập và học lý thuyết về tích phân, đọc nội dung bài mới
III. Tiến trình bài dạy:
Ổn định:
Kiểm tra bài cũ: Tính
Bài mới:
HĐ1: Tính diện tích hình phẳng giới hạn bởi đường cong và trục hoành
Hoạt động của thày và trò
Nội dung
Xây dựng công thức
- Cho học sinh tiến hành hoạt động 1 SGK
- GV đặt vấn đề nghiên cứu cách tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục Ox và các đường thẳng x = a, x = b.
- GV giới thiệu 3 trường hợp:
+ Nếu hàm y = f(x) liên tục và không âm trên . Diện tích S của hình phẳng giới hạn bởi đồ thị của f(x), trục Ox và các đường thẳng x = a, x = b là:
+ Nếu hàm y = f(x) 0 trên . Diện tích
+ Tổng quát:
GV: Củng cố công thức
- Gv đưa ra ví dụ 1 SGK, hướng dẫn học sinh thực hiện
Xây dựng công thức
- GV treo bảng phụ hình vẽ 54 SGK
- GV đặt vấn đề nghiên cứu cách tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f1(x), và y = f2(x) và hai đường thẳng x = a, x = b
- Từ công thức tính diện tích của hình thang cong suy ra được diện tích của hình phẳng trên được tính bởi công thức
Hs n/c phần lưu ý
HĐ II Tính thể tích
- Giáo viên đặt vấn đề như SGK và thông báo công thức tính thể tich vật thể (treo hình vẽ đã chuẩn bị lên bảng)
- Hướng dẫn Hs giải vd4 SGK
Xét khối nón (khối chóp) đỉnh A và diện tích đáy là S, đường cao AI = h. Tính diện tích S(x) của thiết diện của khối chóp (khối nón) cắt bởi mp song song với đáy.
GV h ướng dẫn
Do đó, thể tích của khối chóp (khối nón) là:
V c ủa kh ối ch óp c ụt
Hs tiến hành giải quyết vấn đề đưa ra dưới sự định hướng của giáo viên.
Thể tích của khối chóp cụt (nón cụt) là:
HĐIII: công thức tính thể tích khối tròn xoay
- Giáo viên nhắc lại khái niệm khối tròn xoay: Một mp quay quanh một trục nào đó tạo nên khối tròn xoay
+ Gv định hướng Hs tính thể tích khối tròn xoay (treo bảng phụ trình bày hình vẽ 60SGK). Xét bài toán cho hàm số y = f(x) liên tục và không âm trên . Hình phẳng giới hạn bởi đồ thị y = f(x), trục hoành và đường thẳng x = a, x = b quay quanh trục Ox tạo nên khối tròn xoay
Tính diện tích S(x) của thiết diện khối tròn xoay cắt bởi mp vuông góc với trục Ox? Viết công thức tính thể tích của khối tròn xoay này.
- Thiết diện khối tròn xoay cắt bởi mp vuông góc với Ox là hình tròn có bán kính y = f(x) nên diện tích của thiết diện là:
Suy ra thể tích của khối tròn xoay là
Gv hướng dẫn Hs giải vd5, vd6 SGK
- Chia nhóm học sinh, yêu cầu Hs làm việc theo nhóm để giải vdụ
+ Đối với câu a) Gv hướng dẫn Hs vẽ hình cho dễ hình dung
GV hướng dẫn HS làm ý b/
I. Tính diện tích hình phẳng
1. Hình phẳng giới hạn bởi đường congtrục
hoành
y
A' B'
x
o a b
A B
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục, trục Ox và các đường thẳng x = a, x = b được tính theo công thức:
Ví dụ 1: SGK
Ví dụ 2: Tính diện tích hình phẳng giới hạn bởi Parabol và trục hoành Ox .
Bài giải
Hoành độ giao điểm của Parabol và trục hoành Ox là nghiệm của phương trình .
2. Hình phẳng giới hạn bởi hai đường cong
Cho hai hàm số y = f1(x) và y = f2(x) liên tục trên . Gọi D là hình phẳng giới hạn bởi đồ thị hai hàm số đó và các đường thẳng x = a, x = b trong hình 54 thì diện tích của hình phẳng được tính theo công thức
y y=f(x1)
y=f(x2)
o a b x
Lưu ý: Để tính S ta thực hiện theo các cách
Cách 1: Chia khoảng, xét dấu biểu thức f1(x) – f2(x) rồi khử dấu trị tuyệt đối
Cách 2: Tìm nghiệm của phương trình f1(x) – f2(x) = 0. Giả sử ptrình có 2 nghiệm c, d (c <d)
thuộc thì:
t
II. Tính thể tích
1. Thể tích của vật thể
Một vật thể V giới hạn bởi 2 mp (P) và (Q). Chọn hệ trục toạ độ có Ox vuông góc với (P) và (Q). Gọi a, b (a < b) là giao điểm của (P) và (Q) với Ox. Gọi một mp tùy ý vuông góc với Ox tại x () cắt V theo thiết diện có diện tích là S(x). Giả sử S(x) liên tục trên . Khi đó thể tích của vật thể V được tính bởi công thức
2. Thể tích khối chóp và khối chóp cụt
* Thể tích khối chóp:
Xét khối nón (khối chóp) đỉnh A và diện tích đáy là S, đường cao AI = h.
* Thể tích khối chóp cụt:
III. Thể tích khối tròn xoay
1. Thể tích khối tròn xoay
y
y=f(x)
x
o a x b
2. Thể tích khối cầu bán kính R
y
-R R x
Ví dụ: Tính thể tích vật tròn xoay tạo thành khi quay hình phẳng (H) xác định bởi các đường sau quanh trục Ox
a) , y = 0, x = 0 và x = 3
b) , y = 0, x = , x =
Giải:
a/
b/
IV. Củng cố:
Giáo viên hướng dẫn học sinh ôn lại kiến thức trọng tâm của bài học
Nhắc lại công thức tính thể tích của một vật thể nói chung từ đó suy ra công thức của thể tích khối chóp, khối nón
Nhắc lại công thức tính thể tích khối tròn xoay
Bài tập về nhà:
Giải các bài tập SGK
Bài tập làm thêm:
Tính diện tích hình phẳng giới hạn bởi các đường sau
.
.
.
.
.
.
Tính diện tích của hình phẳng giới hạn bởi Parabol tiếp tuyến với nó tại điểm M(3;5) và trục tung .
3. Tính thể tích của vật thể tròn xoay, sinh bởi mỗi hình phẳng giới hạn bởi các đường sau đây khi nó quay xung quanh trục Ox .
.
.
.
File đính kèm:
- dai so 12 ungdung tichphan.doc