I. Mục tiêu bài dạy Qua bàidạy, học sinh cần nắm :
1. Kiến thư c : Củng cố lại toàn bộ các kiến thư c của bài tính lồi lõm và điểm uốn của đồ thị hàm số.
2. Kỹ năng : H s thành thạo vận dụng dấu hiệu lồi, lõm và điểm uốn của đồ thị hàm số để tìm các khoảng lồi, lõm va điểm uốn của các hàm số.
3. Tư duy : Lô gic, trư u tư ợng , tư ơng tư .
4. Thái độ : cẩn thận chính xác.
II. Chuẫn bị của giáo viên và học sinh
- Giáo viên: Soạn bài, dụng cụ giảng dạy, phấn màu.
- Học sinh: Soạn bài, làm bài tập ở nhà, dụng cụ học tập.
III. Tiến trình bài dạy.
1/ Kiểm tra bài cũ : Nêu các dấu hiệu nhận biết khoảng lồi lo
14 trang |
Chia sẻ: manphan | Lượt xem: 889 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Giải tích - Tiết 28: Bài tập tính lồi lõm và điểm uốn của đồ thị hàm số, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 55
Tiết 28 BÀI TẬP TÍNH LỒI LÕM VÀ ĐIỂM UỐN CỦA ĐỒ THỊ HÀM SỐ.
Ngày dạy :
I. Mục tiêu bài dạy Qua bài dạy, học sinh cần nắm :
1. Kiến thư ùc : Củng cố lại toàn bộ các kiến thư ùc của bài tính lồi lõm và điểm uốn của đồ thị hàm số.
2. Kỹ năng : Hs thành thạo vận dụng dấu hiệu lồi, lõm và điểm uốn của đồ thị hàm số để tìm các khoảng lồi, lõm va ø điểm uốn của các hàm số.
3. Tư duy : Lô gic, trư øu tư ợng, tư ơng tư ï.
4. Thái độ : cẩn thận chính xác.
II. Chuẫn bị của giáo viên và học sinh
- Giáo viên: Soạn bài, dụng cụ giảng dạy, phấn màu.
- Học sinh: Soạn bài, làm bài tập ở nhà, dụng cụ học tập.
III. Tiến trình bài dạy.
1/ Kiểm tra bài cũ : Nêu các dấu hiệu nhận biết khoảng lồi lõm và điểm uốn của đồ thị hàm số ?
2/ Nội dung bài mới :
Hoạt động của Thầy Hoạt động của Trò Nội dung ghi bảng
Hoạt động 1. Hư ớng dẫn hs làm bài tập
1 sgk.
Gọi hs giải bài tập 2.
Nêu dấu hiệu lồi, lõm và điểm
uốn của đồ thị hàm số ?
GV nhận xét, đánh giá, ghi điểm cho hs.
Hoạt động 2. Hư ớng dẫn hs làm bài tập
3 sgk.
Gọi hs giải bài tập 3.
GV nhận xét, đánh giá, ghi điểm cho hs.
Hoạt động 3. Hư ớng dẫn hs làm bài tập
4 sgk.
Nêu điều kiện cần và đủ để hàm
số nhận điểm (1, 1) là điểm uốn?
* Cho hàm số y = f(x) có đạo hàm cấp 2 trong (
a , b ).
Nếu f’’(x) < 0 x (a,b) thì đồ thị hàm số lồi
trong ( a, b ).
Nếu f’’(x) > 0 x (a,b) thì đồ thị hàm số lõm
trong ( a , b ).
* Cho hàm số y = f(x) liên tục trong lân c ận
của 0x và có đạo hàm cấp 2 trong lân cận ấy
(có thể tại điểm 0x ). Nếu f’’(x) đổi dấu khi x đi
qua 0x thì điểm M( 0x , f( 0x )) là điễm uốn của
đồ thị hàm số đã cho .
* Âäư thë haìm säú nháûn I (1,1) laìm âiãøm uäún
Baìi 2:y = 3x2 - x3 . TXÂ: D = R.
y ' = 6x - 3x2 y ''= 6 - 6x . y '' = 0 x = 1
Baíng xẹt dáúu y ''
x - 1 +
y " + 0 -
Âäư thë loỵm Âiãøm uäún läưi
cuía hsäú I(1; 2)
Baìi 3: a. y = x3 + 6x - 4. TXÂ: D = R.
y' = 3x2 + 6 y'' = 6x , y '' = 0 x = 0.
Baíng xẹt dáúu cuía y ''
x - 1 +
y " - 0 +
Âäư thë läưi Âiãøm uäún loỵm
cuía hsäú I(0; -4)
b. y = 2
24
24
xx . TXÂ: D = R
y ' = x3 + x y '' = 3x2 + 1 > 0 , x R
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 56
GV nhận xét, đánh giá, ghi điểm cho hs.
Hoạt động 4. Hư ớng dẫn hs làm bài tập
5 sgk.
Gọi hs giải bài tập 5.
Nêu dấu hiệu lồi, lõm và điểm
uốn của đồ thị hàm số ?
y ' = ? y '' = ? , y'' = 0 ?
Âäư thë haìm säú cọ hai âiãøm uäún ?
Âäư thë haìm säú khäng cọ âiãøm uäún ?
GV nhận xét, đánh giá, ghi điểm cho hs.
Hoạt động 5. Hư ớng dẫn hs làm bài tập
6 sgk.
Gọi hs giải bài tập 2.
GV nhận xét, đánh giá, ghi điểm cho hs.
. Củng cố :
Nắm vư õng các dấu hiệu lồi, lõm và
điểm uốn của đồ thị hàm số.
Làm các bài tập còn lại.
021.6)1(''
111.1 23
ay
ba
.
* y ' = 4x3 - 2ax
y '' = 12x2 - 2a , y'' = 0 x2 =
6
a
Âäư thë haìm säú cọ hai âiãøm uäún a > 0
Âäư thë haìm säú khäng cọ âiãøm uäún a 0
Âäư thë haìm säú loỵm trãn khoaíng ( - ; + )
Baìi 4: y = x3 - ax2 + x + b. TXÂ: D = R
y ' = 3x2 - 2ax +1, y '' = 6x - 2a
Âäư thë haìm säú nháûn I (1,1) laìm âiãøm uäún
021.6)1(''
111.1 23
ay
ba
2
3
b
a
Baìi 5: y = x4 - ax2 + 3. TXÂ: D = R
y ' = 4x3 - 2ax
y '' = 12x2 - 2a , y'' = 0 x2 =
6
a
Âäư thë haìm säú cọ hai âiãøm uäún a > 0
Âäư thë haìm säú khäng cọ âiãøm uäún a 0
Baìi 6: y =
1
1
2
x
x
TXÂ: D = R
y ' = 22
2
)1(
21
x
xx
; y '' = 32
2
)1(
)14)(1(2
x
xxx
Tçm 3 Â/uäún G(-2- 3 ;
4
31
); H(-2+ 3 ;
4
31
) E(1; 1).
Ptrçnh GH: y =
4
3
4
1 x . Roỵ raìng E GH nãn âäư thë haìm säú âaỵ
cho cọ 3 âiãøm uäún thàĩng haìng.
Tiết 29 TIỆM CẬN
I. Mục tiêu bài dạy.
1. Kiến thư ùc : Các qui tắc dùng để xác định các loại tiệm cận.
2. Kĩnăng : Rèn luyện cho học sinh kỹ năng ư ùng dụng thành thạo các qui tắc đã học vào việc xác định các loại tiệm cận.
3. Giáo dục : Giáo dục học sinh tình cảm yêu thích bộ môn qua việc giải quyết các bài toán có tính thư ïc tiễn.
4. Trọng tâm: Định nghĩa và cách xác định phư ơng trình các tiệm cận của đồ thị hàm số.
II. Chuẫn bị của giáo viên và học sinh
- Giáo viên: Soạn bài, dụng cụ giảng dạy, phấn màu.
- Học sinh: Soạn bài, làm bài tập ở nhà, dụng cụ học tập.
III. Tiến trình bài dạy.
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 57
1/ Kiểm tra bài cũ: Không
2/ Nội dung bài mới:
Hoạt động của Thầy Hoạt động của Trò Nội dung ghi bảng
Hoạt động 1. Hư ớng dẫn hs phát hiện và
nắm vư õng khái niệm tiệm cận của đồ thị
hàm số.
Vậy M dần ra khi nào ?
Hoạt động 2. Hư ớng dẫn hs phát hiện khái
niệm tiệm cận đư ùng của đồ thị hàm số.
Giả sư û hàm số y = f(x) xác định trong một
lân cận V của x0 (có thể trư ø tại x0) có đồ thị
(C) và )(lim0 xfxx . Gọi d là đư ờng thẳng
có phư ơng trình x = x0. M(x, y) (C). Gọi H
là hình chiếu của M trên d.
Xác định tọa độ H và HM = ?
Suy ra: MH
CM
M
)(
lim
= ?
Vậy ta kết luận điều gì ?
Gọi hs giải ví dụ.
Hoạt động 3. Hư ớng dẫn hs phát hiện khái
niệm tiệm cận ngang của đồ thị hàm số.
Giả sư û hàm số y = f(x) xác định trong một
lân cận V của x0 (có thể trư ø tại x0) có đồ thị
(C) và )(lim xf
x . Gọi d là đư ờng thẳng có
phư ơng trình x = x0. M(x, y) (C). Gọi H là
hình chiếu của M trên d.
Xác định tọa độ H và HM = ?
Suy ra: MH
CM
M
)(
lim
=?Vậy ta kết luận điều gì
* Khi x hoặc y hoặc x
và y .
* H(x0, y) HM = |x - x0|.
0lim
)(
MH
CM
M
= ||lim 0
0
xx
xx
= 0.
Đư ờng thẳng x = x0 là một tiệm cận đư ùng
của đồ thị (C).
I. Định nghĩa : Cho hàm số y = f(x) có đồ thị (C) và M(x, y)
(C).
Ta nói rằng đồ thị (C) của hàm số y = f(x) có một nhánh vô cư ïc,
nếu ít nhất một trong các toạ độ x , y của M (x,y) (C) dần tới
vô cư ïc . Khi đó ta nói điểm M chạy ra vô cư ïc trên (C )
Đư ờng thẳng (D) đư ợc gọi là tiệm cận của ( C ) nếu MH
CM
M
)(
lim
(H
điểm chiếu của M lên ( D ).
II. Cách xác định tiệm cận.
2. Tiệm cận đứng :
Định lý: Nếu )(lim0 xfxx thì đư ờng thẳng d có phư ơng trình
x = x0 là một tiệm cận của đồ thị (C).
Đư ờng thẳng x = x0 là một tiệm cận đư ùng của đồ thị (C).
Ví dụ: Tìm tiệm cận đư ùng của ( C ) : y = f(x) =
2
2
2x 1
x 3x 2
.
Chú ý: Nếu )(lim0 xfxx ( )(lim0 xfxx ) thì đư ờng thẳng x = x0
tiệm cận đư ùng bên phải (bên trái) của đồ thị (C).
3. Tiệm cận ngang :
Định lý: Nếu
x
xf )(lim thì đư ờng thẳng
d có phư ơng trình y = y0 là một tiệm cận của
H
()
y
(D)
M(x, y)
x
H
y
()
b
M(x, y)
x
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 58
?
Gọi hs giải ví dụ.
Hoạt động 4. Hư ớng dẫn hs phát hiện khái
niệm tiệm cận ngang của đồ thị hàm số.
Giả sư û hàm số y = f(x) xác định trong một
lân cận V của x0 (có thể trư ø tại x0) có đồ thị
(C) và 0)]()([lim baxxfx . Gọi d là
đư ờng thẳng có phư ơng trình y = ax + b
M(x, y) (C). Gọi H là hình chiếu của M
trên d. Gọi P là giao điểm của đư ờng thẳng
đi qua M và song song (hoặc trùng với Ox).
Xác định toạ độ của P và MP= ?
Gọi là góc giư õa d và Ox ( ≠
2
)
MH và MP có mối liêm hệ gì ?
H> Xác định tọa độ H và HM = ?
Suy ra: MH
CM
M
)(
lim
= ?
Vậy ta kết luận điều gì ?
Gọi hs giải ví dụ.
xlim [f(x) - (ax + b)] = 0 xlim [f(x) -
ax] = ? Suy ra cách xác định hệ số b của
tiệm cận xiên ?
Tư ø xlim [f(x) - (ax + b)] = 0 và xlim [f(x) -
ax] = b xlim x
xf )( = a.
. Củng cố :
Nắm vư õng cách xác định các tiệm cận của
đồ thị hàm số. Làm bài tập 1, 2, 3/76
* H(x,y0) HM = |y - y0|
MH
CM
M
)(
lim
= ||lim 0
0
yy
yy
= 0
Vậy đư ờng thẳng y = y0 là một tiệm cận
của (C).
P(x, ax + b).
MH = MP.cos
MH
CM
M
)(
lim
= cos. MP
CM
M
)((
lim
=
)]()([lim baxxf
x
= 0.
Vậy đư ờng thẳng d: y = ax + b là tiệm cận
của đồ thị hàm số.
* xlim [f(x) - (ax + b)] = 0 xlim [f(x) -
ax] = b.
đồ thị (C).
Đư ờng thẳng y = y0 là một tiệm cận ngang
của đồ thị (C).
Thí dụ 1 :Tìm tiệm cận ngang của ( C ) :
y = f(x) =
2
2
2x
x 3x 2
Chú ý: Nếu ))(lim()(lim 00
xx
yxfyxf thì đư ờng thẳng y = y0
tiệm cận ngang bên trái(bên phải) của đồ thị (C).
4 Tiệm cận xiên :
Gọi ( C ) là đồ thị của hàm số y = f(x) , giả sư û x có thể dần tới
.
( d ) y = ax + b ( (a 0)
a Định lí :
( d) là TC của ( C )
x
lim f(x) (ax b) 0
hoặc 0)]()([lim baxxfx
hoặc 0)]()([lim baxxfx
Đư ờng thẳng d: y = ax + b gọi là tiệm cận xiên của đồ thị hàm
số.
Chú ý: Nếu 0)]()([lim baxxfx thì đư ờng thẳng (d) gọi là
TCX bên trái của (C). Nếu 0)]()([lim baxxfx thì đư ờng
thẳng (d) gọi là TCX bên phải của (C). Nếu
x
lim f(x) (ax b) 0 thì đư ờng thẳng (d) gọi là TCX hai
bên của (C).
* Cách tìm hệ số a, b của TCX y = ax+b :
x
f(x)lim a (a 0)
x
và
x
lim f(x) ax b
Thì đư ờng thẳng y = ax + b là TCX của ( C )
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 59
Tiết 30 BÀI TẬP TIỆM CẬN
I. Mục tiêu bài dạy.
1. Kiến thức : Hư ớng dẫn hs xác định tiệm cận đư ùng, tiệm cận ngang và tiệm cận xiên của ĐTH để giải các bài tập sgk.
2. Kĩ năng : Rèn luyện cho học sinh kỹ năng t ìm các tiệm cận của các ĐTHS.
3. Giáo dục : Giáo dục học sinh tính cẩn thận, có suy luận, khả năng tính toán.
4. Trọng tâm : Các bài tập vềxác đụnh các tiệm cận cả ĐTHS.
II. Chuẫn bị của giáo viên và học sinh
- Giáo viên: Soạn bài, dụng cụ giảng dạy, phấn màu.
- Học sinh: Soạn bài, làm bài tập ở nhà, dụng cụ học tập.
III. Tiến trình bài dạy.
1/ Kiểm tra bài cũ : Có những dạng đường tiệm cận nào ? Nêu cách xác định tương ứng ?
2/ Nội dung bài mới:
Hoạt động của Thầy Hoạt động của Trò Nội dung ghi bảng
Hoạt động 1. Hư ớng dẫn hs làm bài
tập 1 sgk.
Gọi hs giải bài tập 1.
Nêu cách xác định tiệm cận
đư ùng của đồ thị hàm số.
Nêu cách xác định tiệm cận
ngang của đồ thị hàm số.
GV nhận xét, ghi điểm cho hs.
Hoạt động 2. Hư ớng dẫn hs làm bài
tập 2 sgk.
Gọi hs giải bài tập 2.
Nêu cách xác định tiệm cận
xiên của đồ thị hàm số.
* Nếu )(lim0 xfxx thì đư ờng thẳng d
có phư ơng trình
x = x0 là một tiệm cận đư ùng của đồ
thị (C).
* Nếu
x
xf )(lim thì đư ờng thẳng
d có phư ơng trình y = y0 là một tiệm
cận ngang của đồ thị (C).
* ( d) là TCX của ( C )
x
lim f(x) (ax b) 0
hoặc
0)]()([lim baxxfx
Baìi 1:
a. y = 2
2
xx
x
: TCÂ
y = -1 : TCN
b. y = 29
2
x
x
x = 3 , x = -3 cạc TCÂ; y = 0: TCN
c. y =
xx
xx
2
2
523
1
x = -1 , x =
5
3
TCÂ; y = -
5
1
TCN
Baìi 2 y =
1
1
2
3
x
xx MXÂ : D = R
Ta cọ: y = x +
1
1
2 x ; lim0x [ y - x ] = lim0x 01
1
2
x y = x TCX
Baìi 3
a. y =
1
7
x
x
TXÂ: D = R\{-1}
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 60
Hệ số a, b của tiệm cận xiên
đư ợc xác định ntn ?
GV nhận xét, ghi điểm cho hs.
Hoạt động 3. Hư ớng dẫn hs làm bài
tập 4 sgk.
. Củng cố : Nắm vư õng cách xác
định các tiệm cận của đồ thị hàm
số.
hoặc
0)]()([lim baxxfx
*
x
f(x)lim a (a 0)
x
và
x
lim f(x) ax b
lim
1x
1
7
x
x
nãn x = -1 TCÂ; limx 11
7
x
x
nãn y = -1 TCN
b. y =
3
362
x
xx TXÂ: D = R\{3}
lim
3x 3
362
x
xx = nãn x = 3 TCÂ; y = x - 3 -
3
6
x
limx [y - (x - 3)] = limx 03
6
x
nãn y = x - 3 TCÂ
c. y = 5x + 1 +
32
3
x ; TXÂ: D = R\{ 2
3
}
2
3
lim
x
y = x =
2
3
TCÂ; limx [ y - (5x + 1)] = 0 y = 5x + 1: TCX
Tiết 31 KiĨm tra 1 tiÕt
M«n Gi¶i tÝch 12
(Thêi gian lµm bµi 45 phĩt)
C©u 1. Cho hµm sè
2 2(2 1) 4
2( )
x m x m my
x m
(1), m lµ tham sè.
a/. Kh¶o s¸t hµm sè khi m = 0.
b/. X¸c ®Þnh m ®Ĩ hµm sè (1) ®ång biÕn trªn (2, + ).
c/. X¸c ®Þnh m ®Ĩ hµm sè (1) ®¹t cùc ®¹i t¹i x = -1.
d/. T×m m ®Ĩ ®å thÞ hµm sè (1) cã ®iĨm cùc trÞ vµ tÝnh kho¶ng c¸ch gi÷a hai ®iĨm cùc trÞ cđa ®å thÞ hµm sè (1).
C©u 2. T×m GTLN-GTNN cđa hµm sè:
a/. y = |x2-4x+3| trªn ®o¹n [0, 4].
b/. y = 2sin 2 sinx x trªn [-
2
, ].
Tiết 32 KHẢO SÁT HÀM SỐ
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 61
I. Mục tiêu bài dạy.
1. Kiến thức : Hư ớng dẫn hs vận dụng các kiến thư ùc: sư ï đồng b iến, nghịch biến, cư ïc đại, cư ïc tiểu, khoảng lồi lõm, điểm uốn và tiệm cận để đi giải quyết
bài toán khảo sát hàm số y = ax 3 + bx2 + cx + d, a ≠ 0.
2. Kĩ năng : Rèn luyện cho học sinh kỹ năng giải bài toán tổng hợp khảo sát hàm số.
3. Giáo dục : Giáo dục học sinh tính cẩn thận, có suy luận, khả năng tính toán.
4. Trọng tâm : Giải bài toán khảo sát hàm số y = ax3 + bx2 + cx + d.
II. Chuẫn bị của giáo viên và học sinh
- Giáo viên: Soạn bài, dụng cụ giảng dạy, phấn màu.
- Học sinh: Soạn bài, làm bài tập ở nhà, dụng cụ học tập.
III. Tiến trình bài dạy.
1/ Kiểm tra bài cũ :
2/ Nội dung bài mới:
Hoạt động của Thầy Hoạt động của Trò Nội dung ghi bảng
Hoạt động 1. Hư ớng dẫn hs nắm
vư õng sơ đồ khảo sát hàm số.
GV đư a ra sơ đồ khảo sát hàm số kết
hợp kiểm tra hs việcthư ïc hiện tư øng
mục nhỏ trong sơ đò đó.
Âãø xẹt chiãưu biãún thiãn cuía
haìm säú ta laìm ntn ?
x0 laì âiãøm cỉûc âải cuía haìm säú
khi naìo ?
Âãø xẹt tênh läưi loỵm vaì tçm âiãøm
uäún cuía đâäư thë haìm säú ta laìm ntn?
* Xẹt chiãưu biãún thiãn.
Tênh y’,
tçm ra cạc âiãøm tåïi hản,
Xẹt dáúu y’
Suy ra chiãưu biãún thiãn.
* Khi âi qua x0 âảo haìm âäøi dáúu tỉì dỉång
sang ám.
* Tênh y”
Xẹt dáúu y”
Suy ra khoaíng läưi loỵm vaì âiãøm uäún cuía
đâäư thë haìm säú.
i.Så âäư khaío sạt haìm säú:
1. Tçm táûp xạc âënh cuía haìm säú (Nãu tênh tuáưn hoaìn, tênh chàơn leí (nãúu
cọ))
2. Khaío sạt sỉû biãún thiãn
a. Xẹt chiãưu biãún thiãn cuía haìm säú
Tênh y’,
tçm ra cạc âiãøm tåïi hản,
Xẹt dáúu y’
Suy ra chiãưu biãún thiãn.
b. Tênh cạc cỉûc trë
c. Tçm cạc giåïi hản cuía haìm säú
Tênh yyyy
xxxxxx 00
limlimlimlim (x0 laì âiãøm maì haìm säú khäng
xạc âënh).
Tiãûm cáûn (Âäúi våïi hs y =
dcx
bax
vaì y =
''
2
bxa
cbxax
).
d. Láûp baíng biãún thiãn
e. Xẹt tênh läưi, loỵm vaì âiãøm uäún cuía âäư thë haìm säú (Âäúi våïi hs y = ax3 +
bx2 + cx + d vaì y = ax4 + bx2 + c)
Tênh y”
Xẹt dáúu y”
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 62
Bây giờ ta vận dụng để khảo sát một
số hàm số đa thư ùc.
Hoạt động 2. Hư ớng dẫn hs khảo
sát hàm số y = ax3 + bx2 + cx + d.
Xét ví dụ 1. Khaío sạt haìm säú: y = x 3 -
3x + 2
Táûp xạc âënh: D = ?
Xẹt chiãưu biãún thiãn vaì tçm cỉûc trë
cuía haìm säú?
Xẹt tênh läưi loỵm vaì âiãøm uäún cuía
âäư thë haìm säú naìy?
* Táûp xạc âënh: D = R
* Chiãưu biãún thiãn
y ' = 3x2 - 3 = 3 (x2 - 1); y ' = 0 x = 1; x
= -1
Haìm säú âäưng biãún trãn ( - , -1) vaì (1, + ).
Haìm säú nghëch biãún trãn ( -1, 1)
* Cỉûc trë: haìm säú âảt cỉûc âải x = -1 vaì yCÂ = y
(-1) = 4
Haìm säú âảt cỉûc tiãøu x = 1 vaì yCT = y (1) = 0
* Tênh läưi loỵm vaì âiãøm uäún
y'' = 6x ; y'' = 0 x = 0
Suy ra khoaíng läưi loỵm vaì âiãøm uäún cuía đâäư thë haìm säú.
3. Veỵ âäư thë
* Chênh xạc hoạ âäư thë :
+ Tçm mäüt säú âiãøm âàût biãût thuäüc ÂTHS.
+ Veỵ TT cuía âäư thë tải cạc âiãøm CT , âiãøm uäún cuía ÂTHS.
* Veỵ âäư thë.
Chụ yï (SGK).
2. Mäüt säú haìm âa thỉïc
Vê dủ 1: Khaío sạt haìm säú: y = x 3 - 3x + 2
1) Táûp xạc âënh: D = R
2) Sỉû biãún thiãn
a. chiãưu biãún thiãn
y ' = 3x2 - 3 = 3 (x2 - 1); y ' = 0 x = 1; x = -1
Baíng xẹt dáúu y ':
x - -1 1 +
y ' + 0 - 0 +
Haìm säú âäưng biãún trãn: (- , -1) ; (1, + ) vaì nghëch biãún trãn (-1, 1).
b. Cỉûc trë
Haìm säú âảt cỉûc âải x = -1 vaì yCÂ = y (-1) = 4
Haìm säú âảt cỉûc tiãøu x = 1 vaì yCT = y (1) = 0
c. Giåïi hản
)331(limlim 33
xx
x
xx
;
)231(limlim 3
xxxx
Âäư thë khäng cọ tiãûm cáûn
d.Tênh läưi loỵm vaì âiãøm uäún
y'' = 6x ; y'' = 0 x = 0
x - 0 +
y ' - 0 +
Âäư thë läưi Âiãøm uäún loỵm
U(0;2)
e. Baíng biãún thiãn
x - -1 1 +
y ' + 0 - 0 +
y 4 CT +
I(0 ;2 )
O
x
y
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 63
Nháûn xẹt gç vãư âoì thë haìm säú
naìy?
. Củng cố : Nắm vư õng sơ đồ
klhảo sát hàm số.
Nắm vư õng cách khảo sát hàm số y
= ax3 + bx2 + cx + d.
Làm các bài tập SGK.
* Âäư thë haìm säú naìy nháûn âiãøm uäún laìm
tám âäúi xỉïng.
- CĐ 0
3) Âäư thë
* Mäüt säú âiãøm âàût biãût thuäüc ÂTHS :
A B U C D E F
x
y
* Tiãúp tuyãún của ĐTHS tải : + âiãøm uäún I (0,2) laì: y = - 3x+2.
+ điểm CĐ là : y = 4.
+ điểm CT là y = 0.
* Nháûn xẹt : ÂTHS nháûn âiãøm uäún U(0; 2) laìm tám âäúi xỉïng.
Baíng tọm tàõt
Sỉû khaío sạt haìm säú y = ax 3 +bx2 + cx + d
1) Táûp xạc âënh: R
2) Âảo haìm y ' = 3ax 2 + 2bx +c; y '' = 6ax + 2b
3)ÂTHS luän luän cọ mäüt âiãøm uäún. Âäư thë cọ tám âäúi xỉïng laì
âiãøm uäún.
Tiết 33 KHẢO SÁT HÀM SỐ
I. Mục tiêu bài dạy.
1. Kiến thức : Hư ớng dẫn hs vận dụng các kiến thư ùc: sư ï đồng biến, nghịch biến, cư ïc đại, cư ïc tiểu, khoảng lồi lõm, điểm uốn và tiệm cận để đi giải
quyết bài toán khảo sát hàm số y = ax 4 + bx2 + c
2. Kĩ năng : Rèn luyện cho học sinh kỹ năng giải bài toán tổng hợp khảo sát hàm số.
3. Giáo dục : Giáo dục học sinh tính cẩn thận, có suy luận, khả năng tính toán.
4. Trọng tâm : Giải bài toán khảo sát hàm sốy = ax4 + bx2 + c
II. Chuẫn bị của giáo viên và học sinh
- Giáo viên: Soạn bài, dụng cụ giảng dạy, phấn màu.
- Học sinh: Soạn bài, làm bài tập ở nhà, dụng cụ học tập.
III. Tiến trình bài dạy.
1/ Kiểm tra bài cũ : Nêu tóm tắt sơ đồ khảo sát hàm số ?
2/ Nội dung bài mới:
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 64
Hoạt động của thầy Hoạt động của trò Nội dung ghi bảng
Hoạt động 1. Hư ớng dẫn hs khảo sát hàm sốy
= ax4 + bx2 + c
Nãu TXÂ cuía haìm säú?
Âãø xẹt chiãưu biãún thiãn cuía haìm säú ta
laìm ntn.
Xạc âiënh cạc cỉûc trë cuía haìm säú naìy?
Âãø xẹt tênh läưi loỵm vaì tçm âiãøm uäún cuía
đâäư thë haìm säú ta laìm ntn?
Nháûn xẹt gç vãư âäư thë haìm säú naìy?
Xẹt tênh läưi loỵm vaì âiãøm uäún cuía âäư thë haìm
säú naìy?
* TXÂ: D = R , haìm säú chàĩn
* Chiãưu biãún thiãn
y’ = 4x3 - 4x = 4x(x2 - 1)
y’=0 x = -1, x = 0, x = 1.
Haìm säú nghëch biãún trãn ( , -1) vaì (0, 1)
Haìm säú âäưng biãún trãn ( -1, 0) vaì (1, )
* Cỉûc trë
Haìm säú âảt cỉûc tiãøu tải x= 1 vaì yCT=y ( 1)=1
Haìm säú âảt cỉûc âải tải x=0 vaì y CÂ= y(0) =2
* Tênh läưi loỵm, âiãøm uäún
y’’ = 12x2 - 4; y’’ = 0 x =
3
3
* Âäư thë nháûn trủc Oy laìm trủc âäúi xỉïng
Âäư thë càõt Oy tải âiãøm (0,2)
Vê dủ 2:Khaío sạt haìm säú y = -
2
3
2
2
4
xx
2. Khaío sạt haìm säú y = ax 4 + bx2 + c (a 0)
Vê dủ: Khaío sạt haìm säú: y = x 4 - 2x2 + 2.
1. TXÂ: D = R , haìm säú chàĩn
2. Sỉû biãún thiãn
a. Chiãưu biãún thiãn
y’ = 4x3 - 4x = 4x(x2 - 1)
y’=0 x = -1, x = 0, x = 1.
x -1 0 1
y ' - 0 + 0 - 0 +
Haìm säú nghëch biãún trãn ( , -1) vaì (0, 1)
Haìm säú âäưng biãún trãn ( -1, 0) vaì (1, )
b. Cỉûc trë
Haìm säú âảt cỉûc tiãøu tải x= 1 vaì yCT=y ( 1)=1
Haìm säú âảt cỉûc âải tải x=0 vaì y CÂ= y(0) =2
c. Giåïi hản
)221(limlim 44 xxxy xx
Tỉång tỉû
y
x
lim
Âäư thë khäng cọ tiãûm cáûn
d. Tênh läưi loỵm, âiãøm uäún
y’’ = 12x2 - 4; y’’ = 0 x =
3
3
x - 3 /3 3 /3
y '' + 0 - 0 +
Âäư thë loỵm Â/uäún läưi Â/uäún loỵm
(- 3 /3;13/9) ( 3 /3;13/9)
e. Baíng biãún thiãn
x -1 0 1
y ' - 0 + 0 - 0 +
y 2
1 1
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 65
Hoảt âäüng 2. Cho hoüc sinh giaíi vê dủ 2 vaìo
giáúy vaì thu vãư nhaì kiãøm tra.
‘
. Củng cố : Nắm vư õng sơ đồ klhảo sát
hàm số.
Nắm vư õng cách khảo sát hàm số y = ax 3 +
bx2 + cx + d.
Làm các bài tập SGK
3. Âäư thë
Âäư thë nháûn trủc Oy laìm trủc âäúi xỉïng
Âäư thë càõt Oy tải âiãøm (0,2)
Vê dủ 2:Khaío sạt haìm säú y = -
2
3
2
2
4
xx .
Tiết 34 BÀI TẬP KHẢO SÁT HÀM SO Á
Ngày dạy :
I. Mục tiêu : Qua bài học, học sinh cần nắm :
1. Kiến thức : Củng cố lại các kiến thức về khảo sát hàm số y = ax3 + bx2 + cx + d, (a ≠ 0) và y = ax4 + bx2 + c, (a ≠ 0).
2. Kĩ năng : Thành thạo khảo sát hàm số bậc ba và trùng phương, tính toán các con số .
3. Tư duy : Lôgic, quy lạ về quen, tương tự .
4. Thái độ : Cẩn thận, chính xác .
II.Phương tiện :
1. Thực tiễn : Học sinh đã học lý thuyết KSHS và bư ớc đầu thư ïc hành.
2. Phương tiện :
III. Phương pháp : Luyện tập, vấn đáp.
IV. Tiến trình bài học :
1/ Kiểm tra bài cũ : Tóm tắt sơ đồ khảo sát hàm số bậc ba ?
2/ Nội dung bài mới:
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 66
TG Hoạt động của Thầy Hoạt động của Trò Nội dung ghi bảng
Hoạt động 1. Goüi HS giaíi BT 1c.
Nãu TXÂ cuía hs?
Âãø xẹt chiãưu biãún thiãn cuía
haìm säú ta laìm ntn.
Nãu cỉûc trë cuía hs naìy?
Ta cáưn xạc âënh cạc giåïi hản
naìo?
Âãø xạc âënh tênh läư i loỵm vaì
âiãøm uäún cuía ÂTHS ta laìm ntn?
Để vẽ ĐTHS ta cần làm thêm
công việc gì ?
Ta nháûn xẹt gç vãư ÂTHS naìy?
Hoạt động 2 Goüi HS giaíi BT 1d.
* TXÂ: D = R.
* Chiãưu biãún thiãn
y’ = -3x2 + 2x - 1 < 0 , Rx Haìm säú
nghëch biãún trãn ( , )
* Cỉûc trë: haìm säú khäng cọ cỉûc trë.
* Giåïi hản:
y
x
lim
y
x
lim
* Tênh läưi loỵm vaì âiãøm uäún
y’’ = -6x + 2; y’’ = 0 x = 1/3.
ÂTHS läưi trãn (-; 1/3), loỵm trãn (1/3;
+) vaì nháûn U(1/3; -34/27) laìm âiãøm uäún.
* Các điểm đặc biệt thuộc đồ thị hàm
số : U( ; ), A( ; ), B( ; ),
C( ; ), D( ; ), E( ; ),F( ; )
* PPTT våïi ÂTHS tải âiãøm uäún laì :
y =
Baìi 1c/103. y = - x3 + x2 - x - 1
1. TXÂ: D = R.
2. Sỉû biãún thiãn
a. Chiãưu biãún thiãn
y’ = - 3x2 + 2x - 1 < 0 , Rx (a = - 3 < 0, ’< 0)
Haìm säú nghëch biãún trãn ( , )
b. Cỉûc trë: haìm säú khäng cọ cỉûc trë
c. Giåïi hản:
y
x
lim ,
y
x
lim
Âäư thë hàm số khäng cọ tiãûm cáûn.
d. Tênh läưi loỵm vaì âiãøm uäún :
y’’ = -6x + 2; y’’ = 0 x = 1/3
x 1/3
y ‘’ + 0 -
ĐTHS loỵm Â/ uäún läưi
U(1/3;-34//27)
e. Baíng biãún thiãn
x - +
y ’ -
y +
-
3. Âäư thë:
* Các điểm đặc biệt thuộc đồ thị hàm số :
U A B C D E F
x 1/3
y -34/27
* Tiếp tuyến của ĐTHS tại U là : y
* Nháûn xét : ĐTHS nhận âiãøm uäún I(
27
34
,
3
1 ) laìm tám âäúi xỉïng.
O
-1
1
y
x
Trường THPT Nguyễn Đình Chiểu GIẢI TÍCH 12
CMQui -Trang 67
Nãu TXÂ cuía hs?
Âãø xẹt chiãưu biãún thiãn cuía
haìm säú ta laìm ntn?
Nãu cỉûc trë cuía hs naìy ?
Ta cáưn xạc âënh cạc giåïi hản
naìo?
Âãø xạc âënh tênh läưi loỵm vaì
âiãøm uäún cuía ÂTHS naìy ta laìm
ntn?
Để vẽ ĐTHS ta cần làm thêm
công việc gì ?
* Nháûn âiãøm uäún I(
27
34
,
3
1 ) laìm tám âäúi
xỉïng.
* TXÂ: D = R.
* chiãưu biãún thiãn
y’ = 6x2 - 6x = 6x(x - 1)
y’ = 0 x = 0, x = 1
Baíng xẹt dáúu y’ :
x - 0 1 +
y ‘ + 0 - 0 +
Haìm säú âäưng biãún trãn ( ,0) vaì
(1, ). Haìm säú nghëch biãún trãn (0,1)
* Cỉûc trë: Haìm säú âảt cỉûc âải tải x = 0 vaì
yCÂ = y(0) = 1. Haìm säú âảt cỉûc tiãøu tải x =
1 vaì yCT = y(1) = 0
* Giåïi hản
y
x
lim
y
x
lim
Âäư thë khäng cọ tiãûm cáûn
* y’’ = 12x - 6 = 0 x =
2
1
Xẹt dáúu y’’ :
x 1/2
y '' - 0 +
Âäư thë läưi Â/uäún loỵm
U(1/2; 1/2)
* Các điểm đặc biệt thuộc đồ thị hàm
d) y = 2x3 - 3x2 + 1
1. TX
File đính kèm:
- Tiet28-34.pdf