1. Về kiến thức: khái niệm tích phân, diện tích hình thang cong, tính chất của tích phân,
- Học sinh hiểu được bài toán tính diện tích hình thang cong và bài toán quãng đường đi được của một vật.
- Phát biểu được định nghĩa tích phân, định lí về diện tích hình thang cong.
- Viết được các biểu thứcbiểu diễncác tính chất của tích phân
2. Về kỷ năng:
- Học sinh rèn luyện được kĩ năng tính một số tích phân đơn giản.
12 trang |
Chia sẻ: manphan | Lượt xem: 3406 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Giải tích - Tiết 56 - Bài 3: Tích phân, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết: 56-58 Ngày soạn: .. . . . . . . . . .
§ 3 TÍCH PHÂN
I. MỤC TIÊU:
Về kiến thức: khái niệm tích phân, diện tích hình thang cong, tính chất của tích phân,
Học sinh hiểu được bài toán tính diện tích hình thang cong và bài toán quãng đường đi được của một vật.
Phát biểu được định nghĩa tích phân, định lí về diện tích hình thang cong.
Viết được các biểu thứcbiểu diễncác tính chất của tích phân
Về kỷ năng:
Học sinh rèn luyện được kĩ năng tính một số tích phân đơn giản.
Vận dụng vào thực tiễn để tính diện tích hình thang cong , giải các bài toán tìm quãng đường đi được của một vật
Về tư duy thái độ:
Thái độ: tích cực xây dựng bài, chủ động,sáng tạo trong quá trình tiếp cận tri thức mới .
Tư duy: hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ:
Chuẩn bị của thầy :
Phiếu học tập, bảng phụ.
Chuẩn bị của trò:
Hoàn thành các nhiệm vụ ở nhà.
Đọc qua nội dung bài mới ở nhà.
III. PHƯƠNG PHÁP DẠY HỌC:
Thuyết trình, kết hợp thảo luận nhóm và hỏi đáp
IV. TIẾN TRÌNH BÀI HỌC:
Ổn định tổ chức: kiểm tra sỉ số,
Kiểm tra bài cũ :
Viết công thức tính nguyên hàm của một số hàm số hàm số thường gặp.
Tính :
GV nhắc công thức :
Bài mới:
HĐ1: Tìm hiểu khái niệm tích phân qua bài toán diện tích hình thang cong
TG
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
10’
2o’
I/Khái niệm hình thang cong
( Hình 1)
-Dựng hình thang ABCD khi biết các đường thẳng: AB: f(x)=x+1,AD: x=2, CB: x=6 và y = 0 (trục hoành)
-Tính diện tích S hình thang ABCD
-Lấy t . Khi đó diện tích hình thang AHGDbằng bao nhiêu?
-S’(t) = ?.Khi đó S(t) và f(t) có liên hệ như thế nào ?
-Tính S(6) , S(2) ? và S?
Từ lập luận trên dẫn đến k/n hình thang cong và công thức tính d/t nó.
-Giáo viên đưa ra bài toán: Tính diện tích của hình thang cong aABb
Giới hạn bởi đồ thị của hàm số liên tục y = f(x) , f(x) 0, trục Ox và các đương thẳng x = a , x = b (a<b)
-Cho học sinh đọc bài toán 1 sgk
-Kí hiệu S(x) là diện tích hình thang cong giới hạn bởi đồ thị (C) của hàm số y = f(x), trục Ox và các đường thẳng đi qua a, x và song song Oy. Hãy chứng minh S(x) là một nguyên hàm của f(x) trên [a; b]
-Giả sử x0 là điểm tùy ý cố định thuộc (a ; b)
*Xét điểm x(a ; b ]
-Diện tích hình thang cong MNEQ?
-Dựa vào hình 4 so sánh diện tích
SMNPQ , SMNEQ và SMNEF
*f(x) liên tục trên [ a; b ] ?
- Suy ra ?
*Xét điểm x[a ; b )
Tương tự ?
Từ (2) và (3) suy ra gì?
S(x) là 1 nguyên hàm của f(x) trên
[ a; b ] ta biểu diễn S(x)?
* SMNEQ = S(x) – S(x0)
S =?
-Giáo viên củng cố kiến thức BT1
+ Giả sử y = f(x) la một hàm số liên tục và f(x) 0 trên [ a; b ]. Khi đó diện tích của hình thang cong giới hạn bởi đồ thị (C) của hàm số y = f(x), trục Ox và 2 đường thẳng
x = a, x = b là S = F(b) – F(a) trong đó F(x) là một nguyên hàm bất kì của hàm số f(x) trên [ a; b ]
S =
S(t) =
t
S’(t) = t+1= f(t) S(t) là nột nguyên hàm của f(t) = t+1
S(6) = 20,S(2) = 0
và S= S(6)-S(2)
-Bài toán tích diện tích hình phẳng giới hạn bởi một đường cong có thể đưa về bài toán tính diện tích của một số hình thang cong
SMNEQ = S(x) – S(x0)
SMNPQ < SMNEQ < SMNEF
f(x0)
f(x0) (2)
f(x0) (3)
f(x0)
S(x) = F(x) +C (C: là hằng số)
S = S(b) – S(a)
1/ Hai bài toán dẫn đến khái niệm tích phân:
a) Diện tích hình thang cong
-Bài toán 1: (sgk)
Hình 3
KH: S(x) (a )
*Xét điểm x(a ; b ]
SMNEQ là S(x) – S(x0)
Ta có:SMNPQ < SMNEQ < SMNEF
f(x0)(x-x0)<S(x)-S(x0)<f(x)(x-x0)
f(x0)<<f(x) (1)
Vì f(x0)
(1) f(x0)(2)
*Xét điểm x[a ; b )
Tương tự:f(x0)(3)
Từ (2) và (3)ta có:
f(x0)
Hay S’ (x) = f(x0)
Suy ra S’ (x) = f(x) (vì x(a ; b )
nên suy ra S’ (a) = f(a),S’(b) = f(b)
Vậy S(x) là 1 nguyên hàm của f(x)
trên [ a; b ]
S(x)= F(x) +C (C: là hằng số)
S = S(b) – S(a)
= (F(b) +C) – (F(a) + C)
= F(b) – F(a)
7’
-Giáo viên định hướng học sinh giải quyết nhiệm vụ ở phiếu học tập số 1
-Tìm họ nguyên hàm của f(x)?
-Chọn một nguyên hàm F(x) của f(x) trong họ các nguyên hàm đã tìm được ?
-Tính F(1) và F(2)
Diện tích cần tìm ?
-Học sinh tiến hành giải dưới sự định hướng của giáo viên:
I = = C ( C là hằng số)
Chọn F(x) =
F(1) = , F(2) =
S = F(2) –F(1) =
GIẢI:
I = = C
Chọn F(x) = ( C là hằng số)
F(1) = , F(2) =
S = F(2) –F(1) =
Củng cố toàn bài:
Ruùt kinh nghieäm
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tieát 57
Bài mới:
HĐ1: Tìm hiểu khái niệm tích phân qua bài toán diện tích hình thang cong
TG
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
8’
5’
-Giáo viên định hướng học sinh giải bài toán 2 (sgk)
+Gọi s(t) là quãng đường đi được của vật cho đến thời điểm t. Quãng đường đi được trong khoảng thời gian từ thời điểm t = a đến thời điểm t = b là bao nhiêu?
+ v(t) và s(t) có liên hệ như thế nào?
+Suy ra f(t) và s(t) có liên hệ như thế nào?
+Suy ra s(t) và F(t) có liên hệ như thế nào?
+Từ (1) và (2) hãy tính L theo F(a) và F(b)?
-Giáo viên định hướng học sinh giải quyết nhiệm vụ ở phiếu học tập 2
+Tìm họ nguyên hàm của f(t)?
+Lấy một nguyên hàm của F(t) của f(t) trong họ các nguyên hàm đã tìm được
+Tính F(20) và F(50)?
+Quãng đường L vật đi được trong khoảng thời gian từ t1 =20 đến t2=50 liên hệ như thế nào với F(20) và F(50)
-Học sinh tiến hành giải dưới sự định hướng của giáo viên
Quãng đường đi được trong khoảng thời gian từ thời điểm
t = a đến thời điểm t = b là :
L = s(b) – s(a) (1)
v(t) = s’(t)
s’(t) = f(t)
s(t) là một nguyên hàm của f(t) suy ra tồn tại C: s(t) = F(t) +C (2)
Từ (1) và (2) L= F(b)–F(a)
-Học sinh tiến hành giải dưới sự định hướng của giáo viên
I =
F(t) =
F(20) = 640 ; F(50) = 3850
Suy ra L = F(50)–F(20)=3210(m)
b, Quãng đường đi đượccủa1 vật
Bài toán 2: (sgk)
CM: Quãng đường đi được trong khoảng thời gian từ thời điểm
t = a đến thời điểm t = b là :
L = s(b) – s(a) (1)
v(t) = s’(t)
s’(t) = f(t)
s(t) là một nguyên hàm của f(t) suy ra tồn tại C: s(t) = F(t) +C (2)
Từ (1) và (2) L= F(b)–F(a)
GIẢI:
I =
F(t) =
F(20) = 640 ; F(50) = 3850
Suy ra L = F(50)–F(20)=3210(m)
Hoạt động 3: Tìm hiểu khái niệm tích phân
TG
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
7’
5’
15’
-Giáo viên nêu định nghĩa tích phân (sgk)
-Giáo viên nhấn mạnh. Trong trường hợp a < b, ta gọi là tích phân của f trên đoạn [a ; b ].
Giáo viên yêu cầu học sinh trả lời câu hỏi (H2)
Gợi ý:
-Gọi F(x) = g(x) +C là họ các nguyên hàm của f(x)
-Chọn nguyên hàm F1(x) = g(x)+C1
bất kì trong họ các nguyên hàm đó.
-Tính F1(a), F1(b)?
-Tính ?
-Nhận xét kết quả thu được
-Giáo viên lưu ý học sinh: Người ta còn dùng kí hiệu F(x)| để chỉ hiệu số F(b) -F(a).
-Hãy dùng kí hiệu này để viết
-Giáo viên lưu ý học sinh: Người ta gọi hai số a, b là hai cận tích phân, số a là cận dưới, số b la cận trên, f là hàm số dưới dấu tích phân, f(x)dx là biểu thức dưới dấu tích phân và x là biến số lấy tích phân
-Giáo viên định hướng học sinh giải quyết nhiệm vụ ở phiếu học tập số 3
Học sinh tiếp thu và ghi nhớ
Học sinh tiến hành giải dưới sự định hướng của giáo viên
Giả sử: F(x) = = g(x)+C
Chọn F1(x) = g(x)+C1 bất kì
F1(a) = g(a)+C1
F1(b) = g(b)+C1
= [g(b)+C1]-[g(a)+C1]
= g(b) – g(a)
Không phụ thuộc vào cách chọn C1 đpcm
Học sinh tiếp thu , ghi nhớ
Giả sử F(x) là một nguyên hàm của f(x) thì: = F(x)|
Học sinh giải quyết dưới sự định hướng của giáo viên:
2/Khái niệm tích phân
Định nghĩa: (sgk)
Người ta còn dùng kí hiệu F(x)| để chỉ hiệu số F(b) -F(a).Như vậy nếu F là một nguyên hàm của f trên k thì : = F(x)|
5’
a)
-Tìm nguyên hàm của 2x?
-Thay các cận vào nguyên hàm trên
b)
-Tìm nguyên hàm của sinx?
-Thay các cận vào nguyên hàm trên
c)
-Tìm nguyên hàm của ?
-Thay các cận vào nguyên hàm trên
d)
-Tìm nguyên hàm của ?
-Thay các cận vào nguyên hàm trên
+Với định nghĩa tích phân như trên, kết quả thu được ở bài toán 1 được phát biểu lại như thế nào?
-Giáo viên thể chế hóa tri thức, đưa ra nội dung của định lý 1:Cho hàm số y = f(x) liên tục và không âm trên K; a và b là hai số thuộc K
( a<b). Khi đó diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y = f(x) trục hoành và 2 đường thẳng x = a, x =b là: S =
-Giáo viên hướng dẫn học sinh trả lời H3.
-Theo kết quả của bài toán 2. quãng đường vật đi được từ điểm a đến thời điểm b được tính như thế nào?
-Dựa vào định nghĩa tích phân hãy viết lại kết quả thu được?
a) = x2| = 25 – 1 = 24
b) = - cosx |=- (0 -1) =1
c)= tanx|=
d)= ln|x||= ln4 – ln2 =ln
= ln2
Học sinh thảo luận theo nhóm trả lời.
Học sinh giải quyết dưới sự định hướng của giáo viên:
Theo kết quả của bài toán 2. Quãng đường vật đi được từ điểm a đến thời điểm b là:
L = F(b) –F(a)
F(x) là nguyên hàm của f(x)
Theo định nghĩa tích phân
= F(b) –F(a)
L = (đpcm)
Giải:
a) = x2| = 25 – 1 = 24
b) = - cosx |=- (0 -1) =1
c)= tanx|=
d)= ln|x||= ln4 – ln2 =ln
= ln2
ĐỊNH LÍ1: Cho hàm số y = f(x) liên tục và không âm trên K; a và
b là hai số thuộc K
( a<b). Khi đó diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y = f(x) trục hoành và 2 đường thẳng x = a, x =b là:
S =
Theo kết quả của bài toán 2. Quãng đường vật đi được từ điểm a đến thời điểm b là:
L = F(b) –F(a)
F(x) là nguyên hàm của f(x)
Theo định nghĩa tích phân
= F(b) –F(a)
L = (đpcm)
Củng cố :
Nhắc lại định nghĩa tích phân
Chuẩn bị trước ở nhà phần bài học còn lại
Ruùt kinh nghieäm
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tieát 58
Bài mới:
HĐ1: Tìm hiểu các tính chất của tích phân
TG
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
15’
-Giáo viên phát biểu định lí 2(sgk)
-Giáo viên định hướng học sinh chứng minh các tính chất trên: Giả sử F là một nguyên hàm của f, G là một nguyên hàm của g .
1) = 0
-Nguyên hàm của f(x) ?
-Thay các cận vào nguyên hàmtrên?
2) = -
= ?
= ?
3) + =
= ?
= ?
= ?
4) F(x) là nguyên hàm của f(x), G(x) là nguyên hàm của g(x)
nguyên hàm của f(x) + g(x) =?
+ = ?
Học sinh tiếp thu và ghi nhớ
Học sinh thực hiện dưới sự định hướng của giáo viên
= F(x)|= F(a) – F(a) = 0
= F(x)|= F(b) – F(a)
= F(x)|= F(a) – F(b)
= -
+ =F(x)|+F(x)|=F(b) – F(a) + F(c) – F(b)= F(c) – F(a)
= F(x)|= F(c) – F(a)
+ =
4)
=
= F(b) – F(a) + G(b) – G(a)
+ = F(x)|+G(x)|
= F(b) – F(a) + G(b) –G(a) (đpcm)
3 Tính chất của tích phân
ĐỊNH LÍ2: (sgk)
CM:(Giáo viên HD chứng minh tính chất 3,4,5)
1)= F(x)|=F(a) – F(a)= 0
2)= F(x)|= F(b) – F(a)
= F(x)|= F(a) – F(b)
= -
3) + =F(x)|+F(x)|=F(b) – F(a) + F(c) – F(b)= F(c) – F(a)
= F(x)|= F(c) – F(a)
+ =
4)
=
= F(b) – F(a) + G(b) – G(a)
+ = F(x)|+G(x)|
= F(b) – F(a) + G(b) –G(a) (đpcm)
25’
5) F(x) là nguyên hàm của f(x)
nguyên hàm của kf(x)?
=?
=?
Giáo viên định hướng học sinh giải quyết nhiệm vụ ở phiếu học tập số 4
Biểu thức của tính chất 4?
Áp dụng tính chất này tính tích phân trên?
Xét dấu của x – 2 trên [1: 3]?
Áp dụng tính chất 3 tính tích phân trên?
5) =
=kF(b)- kF(a) = k[F(b) – F(a)]
= kF(x)=k[F(b) – F(a)]
=
Học sinh thực hiện dưới sự định hướng của giáo viên
I =
=
= - cos2x |- sinx |
= -(cos - cos0 ) - sin-sin0
= 0
J=
= +
= [-]+[]
= 1
5) =
=kF(b)- kF(a) = k[F(b) – F(a)]
= kF(x)=k[F(b) – F(a)]
=
I =
=
= - cos2x |- sinx |
= -(cos - cos0 ) - sin-sin0
= 0
J=
= +
= [-]+[]
= 1
Bài tập:
- Vẽ đồ thị của hàm số y = x/2 + 3
- Hình giới hạn bởi đồ thị hàm số y = +3 , y = o , x = -2, x = 4 là hình gì.
Hàm số y = +3 trên [-2;4] có tính chất gì?
-Vậy tích phân được tính như thế nào?
- Tính diện tích hình thang ABCD.
- Vẽ đồ thị hàm số y = trên [-3;3].
- Hình giới hạn bởi đồ thị hàm số y = , y = o , x = -3, x = 3 là hình gì.
- Do đó được tính như thế nào.
- Hình thang.
Hàm số y = +3 0 và liên tục với trên [-2;4].
- là diện tích hình giới hạn bởi đồ thị hàm số y = +3 ,
y = 0 , x = -2, x = 4
- SABCD = (AB+CD).CD =21
- Nửa hình tròn tâm O bán kính R = 3.
- là diện tích nửa hình tròn giới hạn bởi y = ; y = 0; x =-3; x = 3.
Bài 10: Không tìm nguyên hàm hãy tính các tích phân sau:
a) c)
Giải: B
C
D o A
Ta có hàm số y = +3 0 và liên tục với x [-2;4].
Do đó là diện tích hình giới hạn bởi đồ thị hàm số y = +3 , y = o , x = -2, x = 4 .
Mặt khác:
SABCD = (AB+CD).CD=21
Vậy =21
b)
Vì y = liên tục, không âm trên [-3;3] nên là diện tích nửa hình tròn giới hạn bởi y = ; y = 0; x =-3; x = 3.
Vậy =
-Các , , quan hệ với nhau như thế nào
- viết dưới dạng hiệu như thế nào?
-+ =
=4-
Bài 11. Cho biết =-4, =6, =8.
Tính a)
d)
Giải :
Ta có:
+ =
=-
=10
d) Ta có
= 4- = 16
- phụ thuộc vào đại lượng nào và không phụ thuộc vào đại lượng nào?
- Vậy ta có ? ?
- phụ thuộc vào hàm số f, cận a,b và không phụ vào biến số tích phân.
- =3
= 3
=7
=7.
Bài 12. Biết =3. =7. Tính
Giải:
Ta có =3 = 3
=7=7.
Mặt khác
+=
=-
=4
- Nếu F(x) là một nguyên hàm của f(x) thì F(x) liên hệ như thế nào với f(x)?
- Dấu của F(x) trên [a;b] ? Từ đó cho biết tính tăng, giảm của F(x).
- Dấu của f(x) – g(x) với x [a;b].
- Suy ra ?o
- F’(x) = f(x)
- F’(x) 0 . Do đó F(x) không giảm trên [a;b].
Vì vậy
a F(a) F(b).
-f(x) g(x) x [a;b].
f(x) – g(x) 0 x [a;b].
- 0
Bài 13. a) Chứng minh rằng nếu f(x) 0 trên [a;b] thì 0.
b) Chứng minh rằng nếu f(x) g(x) trên [a;b] thì
Giải:
a) Gọi F(x) là một nguyên hàm của f(x) th ì F’(x) = f(x) 0 nên F(x) không giảm trên [a;b].
Nghĩa là a F(a) F(b).
F(b) – F(a) 0
= F(b) – F(a) 0
b) Ta có
f(x) g(x) x [a;b].
f(x) – g(x) 0 x [a;b].
Suy ra 0
-0
Củng cố toàn bài:
Phát biểu lại kết quả cuă bài toán tính diện tích hình thang cong và bài toán quãng đường đi được một vật.
Phát biểu được định nghĩa tích phân, định lý về diện tích hình thang cong.
Viết được các biểu thức biểu diễn các tính chất của tích phân.
Trả lời câu hỏi H5.
Cách tính tích phân dựa trên diện tích hình thang cong
Chứng minh rằng nếu m f(x) M trên[a;b] thì m(b-a) M(b-a).
Nhiệm vụ về nhà
-Xem lại bài toán tính diện tích hình thang cong và bài toán quãng đường đi được một vật.
-Học thuộc các tính chất của tích phân.
Giải bài tập sách giáo khoa
Bài tập làm thêm:
Tính diện tích hình thang cong giới hạn bởi đồ thị hàm số y = -2x2 +3x +6 ,trục hoành , trục tung và đường thẳng x =2 .
Tính : I = .
Phụ Lục:
Phiếu học tập số 1
Tính diện tích hình thang cong giới hạn bởi đồ thị hàm số y = x4 trục hoành và hai đường thẳng x =1 , x =2
Phiếu học tập số 2
Vật chuyển động thẳng có vận tốc thay đổi theo thời gian v = f(x) = 3t + 2 m/s. Tìm quãng đường L vật đi được trong khoảng thời gian từ t1 = 20 s đến t2 = 50 s?
Phiếu học tập số 3
Tính giá trị các tích phân sau:
a) b) c) d)
Phiếu học tập số 4
Tính các tích phân sau:
I= , J=
Ruùt kinh nghieäm
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
File đính kèm:
- T56-58_CIII.DOC