A. MỤC TIÊU:
1) Về kiến thức : Giúp học sinh hiểu thế nào là khối đa diện, hình đa diện.
2) Về kĩ năng : Phân chia một khối đa diện thành các khối đa diện đơn giản.
3) Về tư duy, thái độ : Rèn luyện tư duy logic, tính cẩn thận, chính xác trong tính và lập luận.
B. CHUẨN BỊ CỦA GV VÀ HS: (đánh dấu chéo vào phần nào có yêu cầu)
24 trang |
Chia sẻ: manphan | Lượt xem: 850 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án lớp 12 môn Hình học - Bài 1: Khái niệm về khối đa diện (tiết 3), để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chương 1 : KHỐI ĐA DIỆN & THỂ TÍCH CỦA CHÚNG.
§1. KHÁI NIỆN VỀ KHỐI ĐA DIỆN.
Tuần: 01 Ký duyệt
Tiết PPCT: 1, 2.
Ngày soạn: 10/08/2009.
Ngày dạy: 22/08/2009
MỤC TIÊU:
Về kiến thức : Giúp học sinh hiểu thế nào là khối đa diện, hình đa diện.
Về kĩ năng : Phân chia một khối đa diện thành các khối đa diện đơn giản.
Về tư duy, thái độ : Rèn luyện tư duy logic, tính cẩn thận, chính xác trong tính và lập luận.
CHUẨN BỊ CỦA GV VÀ HS: (đánh dấu chéo vào phần nào có yêu cầu)
Chuẩn bị của hs :
Thước kẻ, compas. Hs đọc bài này trước ở nhà.
Bài cũ Làm bài tập trong sgk.
Giấy phim trong, viết lông. ................................................................
Chuẩn bị của gv :
Thước kẻ, compas. Các hình vẽ.
Các bảng phụ Bài để phát cho Hs.
Computer, projector. Câu hỏi trắc nghiệm.
PHƯƠNG PHÁP DẠY HỌC: (đánh dấu chéo vào phần nào có yêu cầu)
Gợi mở, vấn đáp. Phân tích, tổng hợp.
Phát hiện và giải quyết vấn đề. Trực quan sinh động.
Hoạt động nhóm. .................................................................
TIẾN TRÌNH LÊN LỚP:
Ôn và kiểm tra kiến thức cũ :
Bài mới :
Hoạt động 1: tiếp cận khái niệm.
Hoạt động giáo viên
Hoạt động học sinh
Nội dung ghi bảng
+Treo bảng phụ 1 và yêu cầu học sinh nhận xét:
-Gợi ý:1. mỗi hình tạo thành bằng cách ghép bao nhiêu đa giác?
2. mỗi hình chia không gian thành 2 phần, mô tả mỗi phần?
-Gợi ý trả lời: 2. bơm khí màu vào mỗi hình trong suốt để phân biệt phần trong và ngoài
→ giáo viên nêu khái niệm điểm trong của mỗi hình đó.
-Yêu cầu học sinh trả lời ví dụ 1
-Các hình trong bảng phụ 1 cùng với các điểm trong của nó được gọi là khối đa diện, vậy khối đa diện là gì?
→Gv chốt lại khái niệm.
-Yêu cầu học sinh tham khảo sgk để nêu khái niệm về cạnh, đỉnh, mặt, điểm trong và tên gọi của các khối đa diện.
-Yêu cầu học sinh trả lời ví dụ 2
-Giáo viên giới thiệu các khối đa diện phức tạp hơn trong bảng phụ 1( d, e).
+ Yêu cầu học sinh quan sát trả lời câu hỏi 1 sgk.
-Nêu chú ý trong sgk/5 và nêu khái niệm hình đa diện.
-Yêu cầu học sinh thực hiện hoạt động 1 sgk/5.
-Treo bảng phụ 2 và yêu cầu học sinh trả lời hình nào là hình đa diện, khối đa diện.
-Học sinh quan sát và nhận xét.
-Suy nghĩ trả lời
-A, B, C, D, E không phải là điểm trong của hình đó.
-Học sinh suy nghĩ trả lời
-Khối chóp ngũ giác, khối lăng trụ tam giác.
-Hình a là khối đa diện, hình b không phải khối đa diện vì nó không chia không gian thành 2 phần.
-Suy nghĩ trả lời.
Ví dụ 1:Các điểm A, B, C, D, E có phải là điểm trong của hình dưới đây không?
1/ Khối đa diện, khối chóp, khối lăng trụ.
a/ Khái niệm khối đa diện: (SGK)
b/ Khối chóp, khối lăng trụ:
Ví dụ 2: Gọi tên các khối da diện sau?
c/ Khái niệm hình đa diện: (SGK)
Hoạt động 2: phân chia và lắp ghép khối đa diện:
Hoạt động giáo viên
Hoạt động học sinh
Nội dung ghi bảng
+ Hđtp 1: tiếp cận vd1
-Vẽ hình bát diện. Xét 2 khối chóp S.ABCD và E.ABCD, cho hs nhận xét tính chất của 2 khối chóp.
- Gv nêu kết luận sgk/6
- Yêu cầu học sinh phân chia khối đa diện trên thành 4 khối tứ diện có đỉnh là các đỉnh của đa diện.
- Tương tự chia khối đa diện đó thành 8 khối tứ diện.
- yêu cầu học sinh trả lời câu hỏi 2 sgk/6
+ Hđtp 2: thực hiện hđ 2 sgk/6
-Yêu cầu hs thực hiện hđ 2
Tổng quát: bất kỳ khối đa diện nào cũng có thể phân chia được thành các khối tứ diện.
+ Hđtp 3: Vd2.
Nhận xét ví dụ 1:
- hai khối chóp không có điểm trong chung
- hợp của 2 khối chóp là khối bát diện.
-Suy nghĩ trả lời
-Suy nghĩ trả lời.
1/Khối lăng trụ được phân chia thành A’.ABC; A’.BB’C’C
2/A’.ABC; A’.BB’C’; A’.BCC’
(Học sinh xem vd2 sgk)
2. Phân chia và lắp ghép khối đa diện.
Ví dụ 1: Cho khối đa diện như hình bên.
Tổng quát: (SGK)
Ví dụ 2: ( SGK)
Củng cố( 3’): - Nhắc lại các khái niệm.
-Phân chia khối hình hộp thành 6 khối tứ diện? ( về nhà).
Dặn dò: Làm các bài tập 1, 2, 3, 4, 5 sgk.
Phụ lục:
Bảng phụ 1:
Bảng phụ 2:
BÀI TẬP KHÁI NIỆM VỀ KHỐI ĐA DIỆN
Hoạt động 1: kiểm tra khái niệm và làm bài tập 1,2
Hoạt động giáo viên
Hoạt động học sinh
Nội dung ghi bảng
+ Đặt câu hỏi:
khái niệm về khối đa diện, hình đa diện?
cho khối đa diện có các mặt là tam giác, tìm số cạnh của khối đa diện đó?
cho khối đa diện có các đỉnh là đỉnh chung của 3 cạnh, tìm số cạnh của khối đa diện đó?
+ Gợi ý trả lời câu hỏi:
2. nếu gọi M là số mặt của khối đa diện, vì 1 mặt có 3 cạnh và mỗi cạnh là cạnh chung của 2 mặt suy ra số cạnh của khối đa diện dó là 3M/2
3. nếu gọi Đ là số đỉnh của khối đa diện, vì 1 đỉnh là đỉnh chung của 3 cạnh và mỗi cạh là cạnh chung của 2 mặt suy ra số cạnh của khối đa diện là3Đ/2.
→ Yêu cầu học sinh làm bài tập 1, 2 sgk/7.
_ yêu cầu học sinh tự vẽ những khối đa diện thỏa ycbt 1, 2 sgk.
_ giới thiệu bằng bảng phụ 1 số hình có tính chât như thế bằng bảng phụ 1( áp dụng cho bài tập 1)
-Trả lời khái niệm hình đa diện, khối đa diện.
-Gọi M là số mặt của khối đa diện thì số cạnh của nó là: 3M/2.
-Gọi Đ là số đỉnh của khối đa diện thí số cạnh của khối đa diện đó là 3Đ/2.
- lên bảng làm bài tập.
lên bảng vẽ.
Bài tập 1 sgk/7:
Gọi M, C lần lượt là số mặt, số cạnh của khối đa diện
Khi đó: = C
Hay 3M =2C do đó M phải là số chẵn.
Bài tập 2 sgk/7
Gọi D, C lần lượt là số đỉnh, số cạnh của khối đa diện, khi đó =C hay 3D= 2C nên D là số chẵn.
Hoạt động 2: Phân chia khối đa diện thành nhiều khối đa diện:
Hoạt động giáo viên
Hoạt động học sinh
Nội dung ghi bảng
yêu cầu học sinh lên bảng làm bài tập 4, 5 sgk
yêu cầu học sinh nhận xét bài làm của bạn và suy nghĩ còn cách nào khác hay chỉ chó 1 cách đó thôi?
Học sinh làm bài tập.
Suy nghĩ và lên bảng trình bày
Bài 4sgk/7
Bài tập 5 sgk/7
Bài tập củng cố
Bài 1: Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất:
A. 5 cạnh. B. 4 cạnh. C. 3 cạnh. D. 2 cạnh.
Bài 2: Cho khối chóp có đáy là n- giác. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Số cạnh của khối chóp bằng n + 1. B. Số mặt của khối chóp bằng 2n.
C. Số đỉnh của khối chóp bằng 2n + 1. D. Số mặt của khối chóp bằng số đỉnh của nó.
Bài 3. Có thể chia hình lập phương thành bao nhiêu tứ diện bằng nhau?
A. 2. B. 4. C. 6. D. Vô số.
Dặn dò( 3’): Học bài cũ, chuẩn bị bài mới.
Phụ lục:
Bảng phụ 1:
§2. PHÉP ĐỐI XỨNG QUA MẶT PHẲNG & SỰ BẰNG NHAU
CỦA CÁC KHỐI ĐA DIỆN.
Tuần: 03 Ký duyệt
Tiết PPCT: 3, 4, 5.
Ngày soạn: 16/08/2009.
Ngày dạy: 04/09/2009
MỤC TIÊU:
Về kiến thức : Qua bài học, học sinh hiểu được phép đối xứng qua mặt phẳng trong không gian cùng với tính chất cơ bản của nó. Sự bằng nhau của 2 hình trong không gian là do có một phép dời hình biến hình này thành hình kia
Về kĩ năng : Dựng được ảnh của một hình qua phép đối xứng qua mặt phẳng. Xác định mặt phẳng đối xứng của một hình.
Về tư duy, thái độ : Rèn luyện tư duy logic, tính cẩn thận, chính xác trong tính và lập luận.
CHUẨN BỊ CỦA GV VÀ HS: (đánh dấu chéo vào phần nào có yêu cầu)
Chuẩn bị của hs :
Thước kẻ, compas. Hs đọc bài này trước ở nhà.
Bài cũ Làm bài tập trong sgk.
Giấy phim trong, viết lông. ................................................................
Chuẩn bị của gv :
Thước kẻ, compas. Các hình vẽ.
Các bảng phụ Bài để phát cho Hs.
Computer, projector. Câu hỏi trắc nghiệm.
PHƯƠNG PHÁP DẠY HỌC: (đánh dấu chéo vào phần nào có yêu cầu)
Gợi mở, vấn đáp. Phân tích, tổng hợp.
Phát hiện và giải quyết vấn đề. Trực quan sinh động.
Hoạt động nhóm. .................................................................
TIẾN TRÌNH LÊN LỚP:
Tiết: 1
Hoạt động 1:
- Ổn định lớp
- Kiểm tra bài cũ:
1. Nêu định nghĩa mp trung trực của một đoạn thẳng.
2. Cho một đoạn thẳng AB. M,N,P là 3 điểm cách đều A và B . Hãy chỉ rõ mp trung trực AB, giải thích?
Hoạt động 2: Đọc và nghiên cứu phần định nghĩa
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
- Nêu định nghĩa phép biến hình trong không gian
- Cho học sinh đọc định nghĩa - Kiểm tra sự đọc hiểu của học sinh.
- Đọc, nghiên cứu đinh nghĩa và nhận xét của phép đối xứng qua mặt phẳng.
I. Phép đối xứng qua mặt phẳng.
Định nghĩa1: (SGK)
Hình vẽ:
Hoạt động 3: Nghiên cứu định lý1
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
- Cho học sinh đọc định lý1.
- Kiểm tra sự đọc hiểu của học sinh, cho học sinh tự chứng minh
- Cho một số VD thực tiễn trong cuộc sống mô tả hình ảnh đối xứng qua mặt phẳng
- Củng cố phép đối xứng qua mặt phẳng
- Đọc đinh lý 1.
- Tự chứng minh định lý
- Học sinh xem các hình ảnh ở SGK và cho thêm một số VD khác.
Định lý1: (SGK)
Hình vẽ:
Hoạt động 4: Tìm hiểu mặt phẳng đối xứng của hình.
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
+Xét 2 VD
Hỏi:
-Hình đối xứng của (S) qua phép đối xứng mặt phẳng (P) là hình nào?
Hỏi :
- Hãy chỉ ra một mặt phẳng (P) sao cho qua phép đối xứng mặt phẳng (P) Tứ diện ABCD biến thành chính nó.
Phát biểu:
- Mặt phẳng (P) trong VD1 là mặt phẳng đối xứng của hình cầu.
- Mặt phẳng (P) trong VD2 là mặt phảng đối xứng của tứ diện đều ABCD.
à Phát biểu: Định nghĩa
Hỏi:
Hình cầu, hình tứ diện đều, hình lập phương, hình hộp chữ nhật . Mỗi hình có bao nhiêu mặt phẳng đỗi xứng?
- Suy nghĩ và trả lời.
- Suy nghĩ và trả lời.
+ Học sinh phân nhóm (4 nhóm) thảo luận và trả lời.
II. Mặt phẳng đối xứng của một hình.
+VD 1: Cho mặt cầu (S) tâm O. một mặt phẳng (P) bất kỳ chứa tâm O.
-Vẽ hình số 11
+VD2: Cho Tứ diện đều ABCD.
-Vẽ hình số 12
-Định nghĩa 2: (SGK)
Hoạt động 5: Giới thiệu hình bát diện đều .
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
- Giới thiệu hình bát diện đều và
Hỏi:
Hình bát diện đều có mặt phẳng đỗi xứng không? Nếu có thì có bao nhiêu mặt phẳng đối xứng ?
+4 nhóm thảo luận và trả lời
III Hình bát diện đều.
-Vẽ hình bát diện đều
Hoạt động 6: Phép dời hình và các ví dụ.
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
-Hỏi:
Có bao nhiêu phép dời hình cơ bản trong mặt phẳng mà em đã học?
-Phát biểu: định nghĩa phép dời hình trong không gian
-Hỏi:
Phép dời hình trong không gian biến mặt phẳng thành ________?
- Phát biểu:
*Phép đối xứng qua mặt phẳng là một phép dời hình
* Ngoài ra còn có một số phép dời hình trong không gian thường gặp là : phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm
+Suy nghĩ và trả lời
+Suy nghĩ và trả lời
- Chú ý lắng nghe và ghi chép
IV. Phép dời hình trong không gian và sự bằng nhau của các hình.
+Định nghĩa:
Củng cố:
Bài tập: Tìm các mặt phẳng đối xứng của các hình sau:
hình chóp tứ giác đều.
Hình chóp cụt tam giác đều.
Hình hộp chữ nhật không có mặt nào vuông.
Tiết: 2
Hoạt động 1: Kiểm tra bài cũ
Định nghĩa phép dời hình trong không gian, nêu một số phép dời hình đặc biệt trong không gian mà em đã học
Nêu tính chất cơ bản của phép dời hình trong không gian và trong mặt phẳng nói riêng.
Hoạt động 2: Nghiên cứu sự bằng nhau của 2 hình.
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Phát biểu:
- Trong mặt phẳng 2 tam giác có các cặp cạnh tương ứng bằng nhau là 2 tam giác bằng nhau, hay 2 đường tròn có bán kính bằng nhau là bằng nhau.
Hỏi :
Lý do nào?
Hỏi:
-Câu trả lời của em có còn đúng trong không gian không? - VD trong không gian có 2 tứ diện có những cặp cạnh từng đôi một tương ứng bằng nhau thì có bằng nhau không?
-Nếu có thì phép dời hình nào đã làm được việc này ? trường hợp này chung ta nghiên cứu định lý 2 trang 13.
- Chú ý lắng nghe.
- Trả lời: có một phép dời hình trong mặt phẳng biến hình này thành hình kia.
- Suy nghĩ và trả lời.
+Định nghĩa ( 2 hình bằng nhau)
Hoạt động 3: Nghiên cứu tìm hiểu và chứng minh định lý 2.
- Cho học sinh đọc dịnh lý và hướng dẫn cho học sinh chứng minh trong từng trường hợp cụ thể
Phát biểu:
Từ định nghĩa và định lý 2 ta thừa nhận 2 hệ quả 1 và 2 trang 14
- Đọc định lý
- Xem chứng minh và phát biểu từng trường hợp qua gợi ý của giáo viên.
- Định lý 2 (SGK)
-Hệ quả1: (SGK)
-Hệ quả 2: (SGK)
Củng cố: Sử dụng bài tập 8 trang 15 (SGK)
Tiết 3:
LUYỆN TẬP
MỤC TIÊU:
Về kiến thức : Nắm được phép đối xứng qua mặt phẳng và sự bằng nhau của 2 khối đa diện. Hiểu được định nghĩa phép dời hình, phép đối xứng qua mặt phẳng và tính chất bảo toàn khoảng cách của nó
Về kĩ năng : Nhận biết được một mặt phẳng nào đó có phải là mặt phẳng đối xứng của 1 hình đa diện hay không. Nhận biết được 2 hình đa diện bằng nhau trong các trường hợp không phức tạp. Vận dụng được vào giải các bài tập SGK
Về tư duy, thái độ : Rèn luyện tư duy logic, tính cẩn thận, chính xác trong tính và lập luận.
TIẾN TRÌNH LÊN LỚP:
Kiểm tra bài cũ :
+CH : Nêu định nghĩa phép đối xứng qua mặt phẳng, phép dời hình và 2 hình bằng nhau.
+Gọi học sinh nhận xét
+Nhận xét và đánh giá của giáo viên
Nội dung bài tập:
HĐGV
HĐHS
Ghi bảng
* HĐ1: Yêu cần học sinh làm bài tập 6/15 (SGK)?
(Gọi 4 HS làm 4 câu lần lượt : a, b, c, d)
-Gọi HS nhận xét từng câu
-Nhận xét và đánh giá
*HĐ2: yêu cầu học sinh làm bài tập 7/15 (SGK)
(Gọi 3 HS làm 3 câu lần lượt: a, b, c)
(GV: Giả sử ta gọi tên:
+Hình chóp tứ giác đều:
S ABCD
+Hình chóp cụt tam giác đều : ABC
+Hình hộp chữ nhật là : ABCD, A'B'C'D'
-Gọi HS nhận xét từng câu
-Nhận xét và đánh giá
*HĐ3: Yêu cầu HS làm bài tập 8/17 (SGK)?
(Gọi 2 học sinh lên bảng trình bày KQ lần lượt a, b).
-Gọi hs nhận xét
-Nhận xét.
*HĐ4: yêu cầu HS làm bài tập 9/17 ( SGK)?
( Gọi 2 học sinh lên bảng, trình bày kết quả).
GY: MN + M'N' = 2HK
-Gọi HS nhận xét
-Nhận xét
-4 HS lên bảng trình bày kết quả lần lượt a, b, c, d
-Nhận xét
-3 HS lên bảng trình bày kết quả lần lượt của 3 câu a, b, c
-Nhận xét lần lượt
-2 HS trình bày cách chứng minh lần lượt a, b.
-Nhận xét
- 2 hs trình bày cách CM.
d
M
M'
H
K
N
N'
-Nhận xét
Bài 6/15:
a) a trùng với a' khi a nằm trên mp (P) hoặc a vuông góc mp (P)
b) a // a' khi a // mp (P)
c) a cắt a' khi a cắt mp (P) nhưng không vuông góc với mp (P)
d) a và a' không bao giờ chéo nhau.
Bài 7/15:
a) Đó là : mp (SAC), mp (SBD), mp trung trực của AB (đồng thời của CD) và mp trung trực của AD (đồng thời của BC)
b) Có 3 mp đối xứng : là 3 mp trung trực của 3 cạnh: AB, BC, CA
c) Có 3 mp đối xứng : là 3 mp trung trực của 3 cạnh : AB, AD, AA'
Bài 8/17:
a) Gọi O là tâm của hình lập phương phép đối xứng tâm O biến các đỉnh của hình chóp A . A'B'C'D' thành các đỉnh của hình chóp C'. ABCD. Vậy 2 hình chóp đó bằng nhau.
b) Phép đối xứng qua mp (ADC'B') biến các đỉnh của hình lăng trụ ABC. A'B'C' thành các đỉnh của hình lăng trụ AA'D' , BB'C' nen 2 hình lăng trụ đó bằng nhau.
Bài 9/17:
*Nếu phép tịnh tiến theo v biến 2 điểm M, N lầm lượt thành M', N' thì :
MM' = NN' = v MN = M'N'.
Do đó : MN = M'N'.
Vậy phép tịnh tiến là 1 phép dời hình.
*Giả sử PĐX qua đường thẳng d biến 2 điểm M, N lần lượt thành M', N'
Gọi H và K lần lượt là trung điểm MM' và NN'
Ta có : MN + M'N' – 2HK
MN – M'N' = HN- HM – HN' + HM'
= N'N + MM'
Vì 2 vectơ MM' và NN' đều vuông góc HK nên : (MN + M'N') (MN - M'N') = 2HK (N'N + MM')
= 0
MN2 = M'N'2 hay MN = M'N'
Vậy phép đối xứng qua d là 2 phép dời hình.
Củng cố và dặn dò :
-Nắm vứng được các KN cơ bản : Phép đối xứng qua mp, phép dời hình, mp đối xứng của hình đa diện, sự bằng nhau của hình đa diện.
-Làm các bài tập còn lại
Rút kinh nghiệm
§3. PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CỦA CÁC KHỐI ĐA DIỆN.
KHỐI ĐA DIỆN ĐỀU.
Tuần: 06 Ký duyệt
Tiết PPCT: 6, 7, 8.
Ngày soạn: 16/09/2009.
Ngày dạy: 26/09/2009
MỤC TIÊU:
Về kiến thức : Phép vị tự trong không gian. Hai hình đồng dạng, khối đa diện đều và sự đồng dạng của các khối đa diện đều.
Về kĩ năng : HS hiểu được định nghĩa phép vị tự. Hai hình đồng dạng, khối đa diện đều và sự đồng dạng của các khối đa diện đều.
Về tư duy, thái độ : Rèn luyện tư duy logic, tính cẩn thận, chính xác trong tính và lập luận.
CHUẨN BỊ CỦA GV VÀ HS: (đánh dấu chéo vào phần nào có yêu cầu)
Chuẩn bị của hs :
Thước kẻ, compas. Hs đọc bài này trước ở nhà.
Bài cũ Làm bài tập trong sgk.
Giấy phim trong, viết lông. ................................................................
Chuẩn bị của gv :
Thước kẻ, compas. Các hình vẽ.
Các bảng phụ Bài để phát cho Hs.
Computer, projector. Câu hỏi trắc nghiệm.
PHƯƠNG PHÁP DẠY HỌC: (đánh dấu chéo vào phần nào có yêu cầu)
Gợi mở, vấn đáp. Phân tích, tổng hợp.
Phát hiện và giải quyết vấn đề. Trực quan sinh động.
Hoạt động nhóm. .................................................................
TIẾN TRÌNH LÊN LỚP:
Ôn và kiểm tra kiến thức cũ : Nêu định nghĩa và tính chất phép vị tự tâm 0 tỉ số k trong mặt phẳng.
Tiết: 1
HĐ1: Hình thành định nghĩa Phép vị tự trong không gian
Hoạt động của GV
Hoạt động của HS
Ghi bảng
-GV hình thành định nghĩa: phép vị tự tâm 0 tỉ số k trong mặt phẳng vẫn đúng trong không gian.
-Trong trường hợp nào thì phép vị tự là 1 phép dời hình.
Từ bài cũ HS hình thành Đ/n và tính chất
HS trả lời
1/Phép vị tự trong không gian:
Đn: (SGK)
Tính chất:(SGK)
k=1,k=-1
HĐ2: Khắc sâu khái niệm phép vị tự trong không gian.
Hoạt động của GV
Hoạt động của HS
Phần trình bày
Treo bảng phụ (VD1 SGK)
GV hướng dẫn:Tìm phép vị tự biến điểm A thành A’,B thành B’,C thành C’,D thành D’?Xác định biểu thức véctơ ?
=k
=k
=k
-HS đọc đề và vẽ hình
-HS:CM có phép vị tự biến tứ diện ABCD thành tứ diện A’B’C’D’
Hs liên tưởng đến 1 biểu thức véctơ chứa các đỉnh tương ứng của 2 tứ diện
(G trọng tâm tứ diện)
Và
.(A trọng tâm tam giác BCD)
Từ đó suy ra =-1/3
Tương tự =-1/3
=-1/3
(VD1 SGK)
Hình vẽ
Có hép vị tự tâm G tỉ số -1/3 Biến tứ diện ABCD thànhTứ diện A’B’C’D’
HĐ3: Khái niệm 2 hình đồng dạng
Hoạt động của GV
Hoạt động của HS
Phần trình bày
Gọi học sinh nêu Đn
Gọi học sinh trình bày ví dụ 2 SGK
Tưong tụ cho 2 hình lập phương
-Hình H được gọi là đồng dạng với hình H’nếu có 1 phép vị tự biến hình Hthành hình H1 mà hình H1 bằng hình H’.
Tâm 0 tùy ý,tỉ số k= a,a’ lần lượt là độ dài của các cạnh tứ diện tương ứng
2/Hai hình đồng dạng:
Đn: (SGK)
Ví dụ 2 (SGK)
Tiết 2
HĐ4: Khái niệm khối đa diệnđều và sự đồng dạng của khối đa diện.
Hoạt động của GV
Hoạt động của HS
Phần trình bày
Gviên nêu định nghĩa
-Dựa vào Đn trên.Hs trả lời Câu hỏi 2 SGK
-Gv hình thành Đn khối đa diện đều
+Các mặt đa giác đều có cùng số cạnh
+Đỉnh là đỉnh chung của cùng một số cạnh
Học sinh ghi nhận
Hs trả lời
3/Khối đa diện đều và sự đồng dạng của khối đa diện đều :
-Khối đa diện được gọi là lồi nếu bất kỳ 2 điểm Avà B nào đó của nó thì mọi điểm của đoạn thẳng AB cũng thuộc khối đó
Đn: (SGK)
-Chú ý:-Đa diện lồi cùng loại thì đồng dạng
HĐ5:Một số khối đa diện đều
Hoạt động của GV
Hoạt động của HS
Phần trình bày
-Dựa vào định nghĩa ,GV cho họch sinh HĐ nhóm và trả lời Câu hỏi 3 SGK
Hướng dẫn đọc bài đọc thêm trang 20
Hs vẽ hình và trả lời
loại
loại
loại
HĐ5: Xác định khối đa diện đều bằng dụng cụ trực quan bằng giấy cứng (20’)
Hsinh sử dụng giấy bìa cứng để làm theo hương dẫn của hình 23 SGK.Gấp giấy theo hướng dẫn được 5 khối đa diện đều
Cũng cố: Bài tập về nhà SGK/20
§4. THỂ TÍCH KHỐI ĐA DIỆN.
Tuần: 09 Ký duyệt
Tiết PPCT: 9, 10, 11.
Ngày soạn: 04/10/2009.
Ngày dạy: 17/10/2009
MỤC TIÊU:
Về kiến thức : Làm cho hs hiểu được khái niệm thể tích của khối đa diện,các công thức tính thể tích của một số khối đa diện đơn giản.
Về kĩ năng : Vận dụng được kiến thức để tính thể tích của các khối đa diện phức tạp hơn và giải một số bài toán hình học.
Về tư duy, thái độ : Rèn luyện tư duy logic, tính cẩn thận, chính xác trong tính và lập luận.
CHUẨN BỊ CỦA GV VÀ HS: (đánh dấu chéo vào phần nào có yêu cầu)
Chuẩn bị của hs :
Thước kẻ, compas. Hs đọc bài này trước ở nhà.
Bài cũ Làm bài tập trong sgk.
Giấy phim trong, viết lông. ................................................................
Chuẩn bị của gv :
Thước kẻ, compas. Các hình vẽ.
Các bảng phụ Bài để phát cho Hs.
Computer, projector. Câu hỏi trắc nghiệm.
PHƯƠNG PHÁP DẠY HỌC: (đánh dấu chéo vào phần nào có yêu cầu)
Gợi mở, vấn đáp. Phân tích, tổng hợp.
Phát hiện và giải quyết vấn đề. Trực quan sinh động.
Hoạt động nhóm. .................................................................
TIẾN TRÌNH LÊN LỚP:
Ôn và kiểm tra kiến thức cũ :
+Câu hỏi 1:Nêu các định nghĩa :Hai khối đa diện bằng nhau,hai hình lập phương bằng nhau,bát diện đều.
+Câu hỏi 2:Cho 1 khối hộp chữ nhật với 3 kích thước 2cm,5cm,7cm.Bằng những mặt phẳng song song với các mặt của khối hộp có thể chia được bao nhiêu khối lập phương có cạnh bằng 1cm?
Bài mới:
Tiết 1:
Hoạt động 1: Hình thành khái niệm thể tích của khối đa diện
HĐ của giáo viên
HĐ của học sinh
Nội dung ghi bảng
Dẫn dắt khái niệm thể tích từ khái niệm diện tích của đa giác
Liên hệ với kt bài cũ nêu tính chất
Nắm khái niệm và tính chất của thể tích khối đa diện
1.Thế nào là thể tích của một khối đa diện?
Khái niệm:Thể tích của khối đa diện là số đo của phần không gian mà nó chiếm chỗ
Tính chất: SGK
Chú ý : SGK
Hoạt động 2: Thể tích của khối hộp chữ nhật
HĐ của giáo viên
HĐ của học sinh
Nội dung ghi bảng
Từ câu hỏi 2 của kt bài cũ,hỏi tt cho khối hộp chữ nhật với ba kích thước a,b,c
H: Từ đó ta có thể tích của khối hộp bằng bao nhiêu?
H:Khi a = b = c ,khối hộp chữ nhật trở thành khối gì?Thể tích bằng bao nhiêu?
Nêu chú ý
H:Muốn tính thể tích khối lập phương,ta càn xác định những yếu tố nào?
Yêu cầu hs tính MN
Yêu cầu hs về nhà cm khối đa diện có các đỉnh là trọng tâm trong ví dụ là khối lập phương
(xem như bt về nhà)
Gọi hs đứng tại chỗ trình bày ý tưởng của bài giải trong câu hỏi 1 sgk
Hs trả lời : a.b.c
Hs trả lời :a.b.c
Hs trả lời :Độ dài của một cạnh
Hs trả lời
2.Thể tích của khối hộp chữ nhật
Định lý 1: SGK
V = a.b.c
Chú ý:Thể tích của khối lập phương cạnh a bằng a3
V = a3
Ví dụ 1:Tính thể tích của khối lập phương có các đỉnh là trọng tâm các mặt của một khối tám mặt đều cạnh a.
Giải: SGK
Hoạt động 3 : Thể tích của khối chóp
HĐ của giáo viên
HĐ của học sinh
Ghi bảng
Gọi hs lên bảng trình bày
Khuyến khích học sinh giải bằng nhiều cách khác nhau
Nhận xét,hoàn thiện
SABCD = a2
Khi a = b
3.Thể tích của khối chóp
Định lý 2: SGK
V = S .h
Ví dụ 2:Cho hình chóp tứ giác đều SABCD cạnh đáy bằng a,cạnh bên bằng b.O là giao điểm của AC và BD
a)Tính thể tích V1 của khối đa diện SABCD
b)Cho a = b,gọi S là giao điểm đối xứng với S qua O.Tính thể tích V của khối đa diện S’SABCD
Tiết 2:
Hoạt động 4 : Thể tích của khối lăng trụ
HĐ của giáo viên
HĐ của học sinh
Ghi bảng
Triển khai bài toán,yêu cầu hs làm bài toán theo gợi ý 3 bước trong SGK
Gv sử dụng mô hình 3 khối tứ diện ghép thành khối lăng trụ tam giác trong bài toán
Dẫn dắt từ ví dụ hình 30 nêu định lý 3
Yêu cầu hs thiết lập công thức của khối lăng trụ đứng
Gọi hs lên bảng trình bày
Nhận xét,chỉnh sửa
Cách 2: Gọi P là trung điểm của CC’ ,yêu cầu hs về nhà cm bài toán này bằng cách 2
Hs nhận xét hình 30,phát biểu kết luận
Nêu cách tính thể tích của khối lăng trụ đứng
Gọi V là thể tích khối lăng trụ
4.Thể tích của khối lăng trụ:
Bài toán:SGK
Giải:
a)BA’B’C’,A’BCC’,A’ABC
b)Ba khối tứ diện có các chiều cao và diện tích đáy tương ứng bằng nhau nên co thể tich bằng nhau
c)
Định lý 3: SGK
V = S .h
Ví dụ 3:Cho khối lăng trụ ABC.A’B’C’.Gọi M’,N’ lần lượt là trung điểm của hai cạnh AA’ và BB’.Mặt phẳng (MNC) chia khối lăng trụ đã cho thành hai phần.Tính tỉ số thể tích của hai phần đó.
Giải.
Hoạt động 5 : Bài tập củng cố
HĐ của giáo viên
HĐ của học sinh
Ghi bảng
Yêu cầu hs xác định đường cao của hình chóp DA’D’C’
Gọi hs lên bảng trình bày câu a
Gợi ý :Tính tỉ số thể tích giữa VDA’C’D’ và V ?
Gọi hs lên bảng làm câu b
Nhận xét,chỉnh sửa
Bài toán: Cho khối hộp ABCD.A’B’C’D’ có đáy là hình thoi cạnh a,A’C’ = a,độ dài cạnh bên bằng b.Đỉnh D cách đều 3 đỉnh A’,D’,C’
a)Tính thể tích khối tứ diện DA’C’D’,tính thể tích V của khối hộp
b)Gọi V1 là thể tích của khối đa diện ABCDA’C’.Tính
Giải.
a).
.
b)
Củng cố,dặn dò: Củng cố lại các công thức tính thể tích khối đa diện. Làm các bài tập trong SGK và sách bài tập
Tiết 3: LUYỆN TẬP
Hoạt động 1 : Hướng dẫn học sinh làm bài tập củng cố lý thuyết
HĐ của giáo viên
HĐ của học sinh
Ghi bảng
H:Hãy so sánh diện tích 2 tam giác BCM và BDM (giải thích).Từ đó suy ra thể tích hai khối chóp ABCM, ABMD?
H:Nếu tỉ số thẻ tích 2 phần đó bằng k,hãy xác định vị trí của điểm M lúc đó?
Yêu cầu hs trả lời đáp án bài tập số 16 SGK
Hai tam giác có cùng đường cao mà MC = 2MD
nên .Suy ra
(vì hai khối đa diện có cùng chiều cao)
=> MC = k.MD
Bài 1 :Cho tứ diện ABCD.M là điểm trên cạnh CD sao cho MC = 2 MD.Mặt phẳng (ABM) chia khối tứ diện thành hai phần .Tính tỉ số thể tích hai phần đó.
Giải:
MC = 2 MD =>
=>
Hoạt động 2: Tính thể tích của khối lăng trụ .
HĐ của giáo viên
HĐ của học sinh
Ghi bảng
Yêu cầu hs xác định góc giữa đường thẳng BC’ và mặt phẳng (AA’C’C)
Gọi hs lên bảng trình bày các bước giải
Nhận xét,hoàn thiện bài giải
Yêu cầu hs tính tổng diện tích các mặt bên của hình lăng trụ ABCA’B’C’
Giới thiệu diện tích xung quanh và Yêu cầu hs về nhà làm bài 20c tương tự
Hs xác định góc giữa đường thẳng BC’ và mặt phẳng (AA’CC’)
Bài 2:Bài 19 SGK
Giải.
a)
=
b)
Do đó
Hoạt động 3: Tính tỉ số thể tích của 2 khối đa diện
HĐ của giáo viên
HĐ của học sinh
G
File đính kèm:
- Chuong 1 Hinh hoc 12 NC.doc