Trong KGOxyz cho ba điểm A(2;1;-1); B(-1;0;-4); C(0;-2;-1)
a/. Viết phương trình mặt phẳng qua ba điểm A, B và C ?.
b/. Viết phương trình mặt phẳng qua điểm A và vuông góc với BC ?
2/. Trong KGOxyz cho hai điểm A(2;1;-1); B(-1;3;-5). Viết phương trình mặt phẳng trung trực của đoạn thẳng AB ?
1 trang |
Chia sẻ: manphan | Lượt xem: 1097 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Hình học - Bài tập phương trình mặt phẳng (tiếp), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BÀI TẬP PHƯƠNG TRÌNH MẶT PHẲNG :
1/. Trong KGOxyz cho ba điểm A(2;1;-1); B(-1;0;-4); C(0;-2;-1)
a/. Viết phương trình mặt phẳng qua ba điểm A, B và C ?.
b/. Viết phương trình mặt phẳng qua điểm A và vuông góc với BC ?
2/. Trong KGOxyz cho hai điểm A(2;1;-1); B(-1;3;-5). Viết phương trình mặt phẳng trung trực của đoạn thẳng AB ?
3/. Trong KGOxyz . Viết phương trình mặt phẳng chứa Ox và qua điểm P(4, -1; 2) ?.
4/. Trong KGOxyz .Viết phương trình mặt phẳng song song với mặt phẳng (P) : 3x – 4y + 1 = 0 và qua điểm A(3;2;-1) ?
5/. Trong KGOxyz cho mặt phẳng (P) : 3x – 4y + z - 1 = 0. Viết phương trình mặt phẳng chứa Oy và vuông góc với (P) ?
6/. Trong KGOxyz cho mặt phẳng (P) : x – y + z - 2 = 0 và 2 điểm A(1; 2; -3) và B(5; -1; 0). Viết phương trình mặt phẳng chứa AB và vuông góc với (P) ?
7/. Trong KGOxyz cho 2 mặt phẳng :
(P) : 2x + y – z + 3 = 0 và (Q) : x + y + z - 1 = 0
a/. Viết phương trình mặt phẳng qua giao tuyến của 2 mặt phẳng (P) và (Q) và song song với Oy.
b/. Viết phương trình mặt phẳng qua giao tuyến của 2 mặt phẳng (P) và (Q) và vuông góc với mặt phẳng (R) : x - 2y + z - 1 = 0 .
8/. Xét vị trí tương đối giữa các mặt phẳng sau :
a/. 2x – 3y + 5x + 1 = 0 và 3x – 3y + z + 2 = 0
b/. 2x + 3y – 4z + 1 = 0 và 4x + 6y – 8z + 3 = 0
9/. Trong KGOxyz cho hai mặt phẳng :
(P) : mx – 2y + 3z – 1 = 0 và (Q) : 2x + ny – 4z +3 = 0.
a/. Tìm m và n để (P) // với (Q).
b/. Khi (P) // (Q). Tính khoảng các giữa (P) và (Q).
10/. Trong KGOxyz cho mặt cầu (S) : x2 + y2 + z2 - 2x - 4y - 4z = 0 . Viết phương trình mặt mặt phẳng tiếp xúc với (S) tại điểm O(0; 0; 0).
11/. Trong KGOxyz cho mặt cầu (S) : x2 + y2 + z2 - 4x + 2y + 4z – 7 = 0 và mặt phẳng (P) : 3x – 4y + 5 = 0
Viết phương trình mặt mặt phẳng tiếp xúc với (S) và song song với mặt phẳng (P).
12/. Trong KGOxyz cho mặt phẳng (P) : 2x – 2y + z - 5 = 0 và điểm I(2; 0; -1) . Viết phương trình mặt phẳng đối xứng của (P) qua điểm I ?.
13/. Trong KGOxyz cho điểm A(5; 0; 0) và M(1; 1; 1) . Viết phương trình mặt mặt phẳng qua điểm M cắt Ox tại điểm A; cắt Oy tại điểm B; cắt Oz tại điểm C sao cho tam giác ABC có diện tích bằng 5 (đvdt).
14/. Trong KGOxyz cho mặt cầu (S) : x2 + y2 + z2 = 9 . Viết phương trình mặt phẳng tiếp xúc với mặt cầu (S); cắt Ox tại điểm A có xA > 0; cắt Oy tại điểm B có yB > 0; cắt Oz tại điểm C có zC > 0 sao cho tứ diện O.ABC có thể tích nhỏ nhất.
File đính kèm:
- Bai tap mat phang(1).doc