Giáo án lớp 12 môn Hình học - Khái niệm về các khối đa diện (tiết 1)

. Mục đích bài dạy:

 1 Kiến thức cơ bản:

- Khái niệm khối lăng trụ và khối chóp, khái niệm về hình đa diện và khối đa diện.

 2. Kỹ năng:

- Nhận biết khái niệm khối lăng trụ và khối chóp, khái niệm về hình đa diện và khối đa diện

 3.Thái độ:

- Tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội.

 

doc22 trang | Chia sẻ: manphan | Lượt xem: 1012 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án lớp 12 môn Hình học - Khái niệm về các khối đa diện (tiết 1), để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chương I: KHỐI ĐA DIỆN. Œ KHÁI NIỆM VỀ KHỐI ĐA DIỆN. (Tiết 1) Ngày soạn : 28.8.2008 I. Mục đích bài dạy: 1 Kiến thức cơ bản: - Khái niệm khối lăng trụ và khối chóp, khái niệm về hình đa diện và khối đa diện. 2. Kỹ năng: - Nhận biết khái niệm khối lăng trụ và khối chóp, khái niệm về hình đa diện và khối đa diện 3.Thái độ: - Tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội. - Hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ. II. Phương pháp: - Thuyết trình, kết hợp thảo luận nhóm và hỏi đáp. - Phương tiện dạy học: SGK. III. Nội dung và tiến trình lên lớp: Hoạt động của Gv Hoạt động của Hs Hoạt động 1: Em hãy nhắc lại định nghĩa hình lăng trụ và hình chóp. I. KHỐI LĂNG TRỤ VÀ KHỐI CHÓP. Gv giới thiệu với Hs khái niệm về khối lăng trụ, khối chóp, khối chóp cụt, tên gọi, các khái niệm về đỉnh, cạnh, mặt, mặt bên, mặt đáy, cạnh bên, cạnh đáy của khối chóp, khối chóp cụt, khối lăng trụ cho Hs hiểu các khái niệm này. Gv giới thiệu với Hs vd (SGK, trang 5) để Hs củng cố khái niệm trên) II. KHÁI NIỆM VỀ HÌNH ĐA DIỆN VÀ KHỐI ĐA DIỆN. 1. Khái niệm về hình đa diện: Hoạt động 2: Em hãy kể tên các mặt của hình lăng trụ ABCDE.A’B’C’D’E’. (Hình 1.4, SGK, trang 5) E D C A B E’ D’ C’ A’ B’ Qua hoạt động trên, Gv giới thiệu cho Hs khái niệm sau: “ Hình đa diện là hình được tạo bởi một số hữu hạn miền đa giác thoả mãn hai tính chất sau: a) Hai đa giác phân biệt chỉ có thể hoặc không có điểm chung hoặc chỉ có một đỉnh chung, hoặc chỉ có một cạnh chung. b) Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng hai đa giác.” Hình 1.5 Một cách tổng quát, hình đa diện (gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác thoả mãn hai tính chất trên. Gv chỉ cho Hs biết được các đỉnh, cạnh, mặt của hình đa diện 1.5. 2. Khái niệm về khối đa diện: Khối đa diện là phần không gian được giới hạn bởi một hình đa diện, kể cả hình đa diện đó.( Hay nói cách khác: Khối đa diện bao gồm hình đa diện và phần không gian phía bên trong ) Gv giới thiệu cho Hs biết được các khái niệm: điểm ngoài, điểm trong, miền ngoài, miền trong của khối đa diện thông qua mô hình. Gv giới thiệu với Hs vd (SGK, trang 7) để Hs hiểu rõ khái niệm trên. Hoạt động 3: Em hãy giải thích tại sao hình 1.8c (SGK, trang 8) không phải là một khối đa diện? Hs thảo luận nhóm để nhắc lại định nghĩa hình lăng trụ và hình chóp. + Quan sát hình vẽ để nắm được khái niệm có liên quan đến khối lăng trụ và khối chóp Hs thảo luận nhóm để kể tên các mặt của hình lăng trụ ABCDE.A’B’C’D’E’ và hình chóp S.ABCDE (Hình 1.4, SGK, trang 5) S D E A C B Đỉnh Cạnh Mặt Hs thảo luận nhóm để giải thích tại sao hình 1.8c (SGK, trang 8) không phải là một khối đa diện? IV. Củng cố: + Gv nhắc lại các khái niệm và quy tắc trong bài để Hs khắc sâu kiến thức. + Dặn BTVN: 1..4, SGK, trang 12. Œ KHÁI NIỆM VỀ KHỐI ĐA DIỆN. (Tiết 2) Ngày soạn : 28.8.2008 I. Mục đích bài dạy: 1 Kiến thức cơ bản: - Nắm được khái niệm hai đa diện bằng nhau thông qua các phép dời hình trong không gian, phân chia và lắp ghép các khối đa diện. 2. Kỹ năng: - Nhận biết khái niệm khối lăng trụ và khối chóp, khái niệm về hình đa diện và khối đa diện, hai đa diện bằng nhau, biết cách phân chia và lắp ghép các khối đa diện. 3.Thái độ: - Tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội. - Hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ. II. Phương pháp: - Thuyết trình, kết hợp thảo luận nhóm và hỏi đáp. - Phương tiện dạy học: SGK. III. Nội dung và tiến trình lên lớp: Ổn định lớp: Kiểm tra sỹ số Bài cũ: Nhắc lại định nghĩa phép dời hình trong mặt phẳng và các phép dời hình trong mặt phẳng Bài mới Hoạt động của giáo viên Hoạt động của học sinh III. HAI ĐA DIỆN BẰNG NHAU. 1. Phép dời hình trong không gian: Gv giới thiệu với Hs khái niệm sau: “Trong không gian, quy tắc đặt tương ứng mỗi điểm M và điểm M’ xác định duy nhất được gọi là một phép biến hình trong không gian. Phép biến hình trong không gian được gọi là phép dời hình nếu nó bảo toàn khoảng cách giữa hai điểm tuỳ ý” M’ M Gv giới thiệu với Hs vd (SGK, trang 8) để Hs hiểu rõ khái niệm vừa nêu. a) Phép tịnh tiến: b) Phép đối xứng qua mặt phẳng: M . . M1 P . M’ + Phép đối xứng tâm O:. . M’ O . M + Phép đối xứng qua đường thẳng : . M’ . M *Nhận xét: + Thực hiện liên tiếp các phép dời hình sẽ được một phép dời hình. + Phép dời hình biến đa diện (H) thành đa diện (H’), biến đỉnh, cạnh, mặt của (H) thành đỉnh, cạnh, mặt tương ứng của (H’) 2. Hai hình bằng nhau: + Hai hình được gọi là bằng nhau nếu có một phép dời hình biến hình này thành hình kia. + Hai đa diện được gọi là bằng nhau nếu có một phép dời hình biến đa diện này thành đa diện kia. Gv giới thiệu với Hs vd (SGK, trang 8) để Hs hiểu rõ khái niệm vừa nêu. Hoạt động 4: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng hai lăng trụ ABD.A’B’D’ và BCD.B’C’D’ bằng nhau. C B A D C’ B’ D’ A’ IV. PHÂN CHIA VÀ LẮP GHÉP CÁC KHỐI ĐA DIỆN. Gv giới thiệu với Hs vd (SGK, trang 11) để Hs biết cách phân chia và lắp ghép các khối đa d + Nhắc lại các phép dời hình trong mặt phẳng + Ghi nhớ định nghĩa phép dời hình trong không gian và hiểu tương tự như trong mặt phẳng + Nhắc lại phép tịnh tiến trong mặt phẳng từ đó suy ra phép tịnh tiến trong không gian + Biết được các khái niệm liên quan: - M1 là trung điểm của MM’ - (P) là mặt phẳng trung trực củaMM’ + Biết được các khái niệm liên quan + Nghe hiểu nội dung Hs thảo luận nhóm để chứng minh rằng hai lăng trụ ABD.A’B’D’ và BCD.B’C’D’ bằng nhau. IV. Củng cố: + Gv nhắc lại các khái niệm và quy tắc trong bài để Hs khắc sâu kiến thức. + Dặn BTVN: 1..4, SGK, trang 12. Tiết 3 § 2. KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. Ngày soạn: 7.9.2008 I. Mục đích bài dạy: 1. Kiến thức cơ bản: Khái niệm về khối đa diện lồi và khối đa diện đều, nhận biết năm loại khối đa diện đều. 2. Kỹ năng: Nhận bết khối đa diệnlồi và khối đa diện đều, biết cách nhận biết năm loại khối đa diện đều, chứng minh được một số tính chất của khối đa diện đều. 3. Thái độ: Tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội. Hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ. II. Phương pháp: - Thuyết trình, kết hợp thảo luận nhoùm vaø hỏi ñaùp. - Phương tiện dạy học: SGK. III. Nội dung và tiến trình lên lớp: 1. Ổn định lớp: Kiểm tra sỹ số 2. Bài cũ: - Nêu khái niệm về khối đa diện, khái niệm hai hình bằng nhau - Nhắc lại hình khái niệm hình đa giác lồi và không lồi 3. Bài mới Hoạt động của Gv Hoạt động của Hs I. KHỐI ĐA DIỆN LỒI. Gv giới thiệu với Hs nội dung định nghĩa sau: “Khối đa diện (H) được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kỳ của (H) luôn thuộc (H). Khi đó đa diện (H) được gọi là khối đa diện lồi” Ví dụ: các khối lăng trụ tam giác, khối chóp, khối tứ diện, khối hộp, khối lập phương là các khối đa diện lồi. Người ta chứng minh được rằng một khối đa diện là khối đa diện lồi khi và chỉ khi miền trong của nó luôn nằm về một phía đói với mỗi mặt phẳng chứa một mặt của nó. (H1.18, SGK, trang 15) Hoạt động 1: Em hãy tìm ví dụ về khối đa diện lồi và khối đa diện không lồi trong thực tế. II. KHỐI ĐA DIỆN ĐỀU. Gv giới thiệu với Hs nội dung định nghĩa sau: “Khối đa diện đều là khối đa diện lồi có tính chất sau đây: + Mỗi mặt của nó là một đa giác đều p cạnh + Mỗi đỉnh của nó là đỉnh chung của đúng q mặt Khối đa diện đều như vậy được gọi là khối đa diện đều loại {p; q}” Qua định nghĩa ta thấy: các mặt của khối đa diện đều là những đa giác đều bằng nhau. Người ta chứng minh được định lý sau: “Chỉ có 5 loại khối đa diện đều. Đó là loại {3; 3}, loại {4; 3}, loại {3; 4}, loại {5; 3}, loại {3; 5}. (H1.20, SGK, trang 16) Hoạt động 2: Em hãy đếm số đỉnh, số cạnh của một khối bát diện đều. Gv giới thiệu với Hs bảng tóm tắt của 5 khối đa diện đều sau: Vẽ hình 1.17 Hs thảo luận nhóm để tìm ví dụ về khối đa diện lồi và khối đa diện không lồi trong thực tế. Hs thảo luận nhóm để đếm số đỉnh, số cạnh của một khối bát diện đều. Loại Tên gọi Số đỉnh Số cạnh Số mặt {3; 3} {4; 3} {3; 4} {5; 3} {3; 5}. Tứ diện đều Lập phương Bát diện đều Mười hai mặt đều Hai mươi mặt đều 4 8 6 20 12 6 12 12 30 30 4 6 8 12 20 Gv hướng dẫn Hs chứng minh vd (SGK, trang 17) để Hs hiểu rõ các tính chất của khối đa diện đều thông qua các hoạt động sau: a/ Cho tứ diện đều ABCD, cạnh bằng a. Gọi I, J, E, F, M, N lần lượt là trung điểm của các cạnh AC, BD, AB, BC, CD, DA (h.1.22a, SGK, trang 17) Hoạt động 3: Em hãy chứng minh tám tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN, JNE là những tam giác đều cạnh bằng . b/ Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (h.1.22b). Hoạt động 4: Em hãy chứng minh AB’CD’ là một tứ diện đều. Tính các cạnh của nó theo a. Hs thảo luận nhóm để chứng minh tám tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN, JNE là những tam giác đều cạnh bằng . Hs thảo luận nhóm để chứng minh AB’CD’ là một tứ diện đều. Tính các cạnh của nó theo a. IV. Củng cố: + Gv nhắc lại các khái niệm và quy tắc trong bài để Hs khắc sâu kiến thức. + Dặn BTVN: 1..4, SGK, trang 18. Tiết 4- KHÔÍ ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU- LUYỆN TẬP Ngày soạn 10.9.2008 I-Mục đích bài dạy: 1. Về kiến thức: - Khắc sâu lại định nghĩa và các tính chất chảu khối đa diện lồi, khối đa diện đều. - Nhận biết được các loại khối đa diện lồi, khối đa diện đều. 2. Về kỹ năng: - Rèn luyện kỹ năng chứng minh khối đa diện đều và giải các bài tập về khối đa diện lồi và khối đa diện đều - Rèn luyện kỹ năng vẽ hình không gian 3. Về tư duy và thái độ: - Rèn luyện tư duy trực quan. - Nhận biết được các loại khối đa diện lồi và khối đa diện đều - Tích cực hoạt động. Biết quy lạ về quen II-Chuẩn bị của GV và HS: GV: chuẩn bị các bài tập giải tại lớp và các hình vẽ minh hoạ trên bảng phụ của các bài tập đó HS: Nắm vững lý thuyết.Chuẩn bị bài tập ở nhà. Thước kẻ III-Phương pháp giảng dạy: gợi mở, vấn đáp, hoạt động nhóm IV-Tiến trình bài học: 1. Ổn định lớp: 2. Kiểm tra bài cũ: 1/ Phát biểu định nghĩa khối đa diện lồi, khối đa diện đều và các tính chất của chúng? 2/ Nêu các loại khối đa diện đều? Cho ví dụ về một vài khối đa diện đều trong thực tế? 3. Bài mới: *Hoạt động 1: Giải bài tập 2 sgk trang 18 Hoạt động của GV Hoạt động của HS Ghi bảng +Treo bảng phụ hình 1.22 sgk trang 17 +Yêu cầu HS xác định hình (H) và hình (H’) +Hỏi: -Các mặt của hình (H) là hình gì? -Các mặt của hình (H’) là hình gì? -Nêu cách tính diện tích của các mặt của hình (H) và hình (H’)? -Nêu cách tính toàn phần của hình (H) và hình (H’)? +GV chính xác kết quả sau khi HS trình bày xong +Nhìn hình vẽ trên bảng phụ xác định hình (H) và hình (H’) +HS trả lời các câu hỏi +HS khác nhận xét *Bài tập 2: sgk trang 18 Giải : Đặt a là độ dài của hình lập phương (H), khi đó độ dài cạnh của hình bát diện đều (H’) bắng -Diện tích toàn phần của hình (H) bằng 6a2 -Diện tích toàn phần của hình (H’) bằng Vậy tỉ số diện tích toàn phần của hình (H) và hình (H’) là *Hoạt động 2: Khắc sâu khái niệm và các tính chất của khối đa diện đều Hoạt động của GV Hoạt động của HS Ghi bảng +GV treo bảng phụ hình vẽ trên bảng +Hỏi: -Hình tứ diện đều được tạo thành từ các tâm của các mặt của hình tứ diên đều ABCD là hình nào? -Nêu cách chứng minh G1G2G3G4 là hình tứ diện đều? +GV chính xác lại kết quả +HS vẽ hình G4 A C D M B G1 G2 G3 K N +HS trả lời các câu hỏi +HS khác nhận xét *Bài tập 3: sgk trang 18 Giải: Xét hình tứ diện đều ABCD có cạnh bằng a. Gọi M, N, K lần lượt là trung điểm của cạnh BC, CD, AD. Gọi G1, G2, G3, G4 lần lượt là trọng tâm của các mặt ABC, BCD, ACD, ABD. Ta có : Chứng minh tương tự ta có các đoạn G1G2 =G2G3 = G3G4 = G4G1 = G1G3 = suy ra hình tứ diện G1G2G3G4 là hình tứ diện đều Điều đó chứng tỏ tâm của các mặt của hình tứ diện đều ABCD là các đỉnh của một hình tứ diện đều. *Hoạt động 3: Giải bài tập 4 sgk trang 18 Hoạt động của GV Hoạt động của HS Ghi bảng +Treo bảng phụ hình vẽ trên bảng a/GV gợi ý: -Tứ giác ABFD là hình gì? -Tứ giác ABFD là hình thoi thì AF và BD có tính chất gì? +GV hướng dẫn cách chứng minh và chính xác kết quả +GV yêu cầu HS nêu cách chứng minh AF, BD và CE cắt nhau tại trung điểm của mỗi đường +Yêu cầu HS nêu cách chứng minh tứ giác BCDE là hình vuô D A B C F E I +HS vẽ hình vào vở +HS trả lời các câu hỏi +HS trình bày cách chứng minh +HS trình bày cách chứng minh *Bài tập 4: sgk trang 18 Giải: a/ Do B, C, D, E cách đều điểm A và F nên chúng cùng thuộc mặt phẳng trung trực của đoạn thẳng AF. Tương tự A, B, F, D cùng thuộc một phẳng và A, C, F, E cũng cùng thuộc một mặt phẳng Gọi I là giao điểm của BD và EC. Khi đó AF, BD, CE đồng quy tại I Ta có: tứ giác ABFD là hình thoi nên: AF^BD Chứng minh tương tự ta có: AF^EC, EC^BD. Vậy AF, BD và CE đôi một vuông góc với nhau *Tứ giác ABFD là hình thoi nên AF và BD cắt nhau tại trung điểm I của mỗi đường -Chứng minh tương tự ta có: AF và EC cắt nhau tại trung điểm I, BD và EC cũng cắt nhau tại trung điểm I Vậy các đoạn thẳng AF, BD, CE cắt nhau tai trung điểm của mỗi đường b/Chứng minh: ABFD,AEFC, BCDE là những hình vuông Do AI^(BCDE) và AB = AC = AD = AE nên IB = IC = ID = IE Suy ra BCDE là hình vuông Chứng minh tương tự ta có : ABFD, AEFC là những hình vuông V. Hướng dẫn và ra bài tập về nhà : Nắm vững lại các định nghĩa về khối đa diện lồi, khối đa diên đều và các tính chất của nó Làm lại các bài tập 1,2,3,4 sgk trang 18 Đọc bài và tìm hiểu bài mới trước ở nhà Tiết 5. § 3: Khái niệm về thể tích của khối đa diện Ngày soạn: 20.9.2008 I. Mục tiêu 1. Về kiến thức: - Nắm được khái niệm về thể tích khối đa diện - Nắm được các công thức tính thể tích của khối hộp chữ nhật, khối lăng trụ, khối chóp. - Biết chia khối chóp và khối lăng trụ thành các khối tứ diện (bằng nhiều cách khác nhau). 2. Về kỹ năng: - Rèn luyện kỹ năng vận dụng các công thức tính thể tích để tính được thể tích khối hộp chữ nhật, khối chóp, khối lăng trụ. - Kỹ năng vẽ hình, chia khối chóp thành các khối đa diện. 3. Về tư duy, thái độ: - Vận dụng linh hoạt các công thức vào các bài toán liên quan đến thể tích. - Phát triển tư duy trừu tượng. - Kỹ năng vẽ hình. II. Chuẩn bị của giáo viên và học sinh: 1. Giáo viên: - Chuẩn bị vẽ các hình 1.25; 1.26; 1.28 trên bảng phụ - Chuẩn bị 2 phiếu học tập 2. Học sinh: - Ôn lại kiến thức hình chóp, lăng trụ... đã học ở lớp 11. - Đọc trước bài mới ở nhà. III. Phương pháp: - Nêu vấn đề, dẫn dắt đến công thức, phát vấn gợi mở, xây dựng công thức - Phát huy tính tích cực tự giác của học sinh IV. Tiến trình bài học. 1. Ổn định tổ chức. 2. Kiểm tra bài cũ (5 phút) H1: Phát biểu định nghĩa khối đa diện, khối đa diện đều và các tính chất của chúng. H2: Xét xem hình bên có phải là hình đa diện không? Vì sao? 3. Bài mới. Hoạt động1: Khái niệm về thể tích khối đa diện Hoạt động giáo viên Hoạt động học sinh Ghi bảng - Đặt vấn đề: dẫn dắt đến khái niệm thể tích của khối đa diện - Giới thiệu về thể tích khối đa diện: Mỗi khối đa diện được đặt tương ứng với một số dương duy nhất V(H) thoả mãn 3 tính chất (SGK). - Giáo viên dùng bảng phụ vẽ các khối (hình 1.25) - Cho học sinh nhận xét mối liên quan giữa các hình (H0), (H1), (H2), (H3) H1: Tính thể tích các khối trên? - Tổng quát hoá để đưa ra công thức tính thể tích khối hộp chữ nhật. + Học sinh suy luận trả lời. + Học sinh ghi nhớ các tính chất. + Học sinh nhận xét, trả lời. + Gọi 1 học sinh giải thích V= abc. I.Khái niệm về thể tích khối đa diện. 1.Kháiniệm(SGK) +Hình vẽ(Bảng phụ) 2. Định lí(SGK) Hoạt động 2: Thể tích khối lăng trụ Hoạt động giáo viên Hoạt động học sinh Ghi bảng H2: Nêu mối liên hệ giữa khối hộp chữ nhật và khối lăng trụ có đáy là hình chữ nhật. H3: Từ đó suy ra thể tích khối lăng trụ * Phát phiếu học tập số 1 + Học sinh trả lời: Khối hộp chữ nhật là khối lăng trụ có đáy là hình chữ nhật. + Học sinh suy luận và đưa ra công thức. + Học sinh thảo luận nhóm, chọn một học sinh trình bày. Phương án đúng là phương án C. II.Thể tích khối lăng trụ Định lí: Thể tích khối lăng trụ có diện tích đáy là B,chiều cao h là: V=B.h Tiết 6: Ngày soạn 29.10.2008 HĐ3: Thể tích khối chóp Hoạt động giáo viên Hoạt động học sinh Ghi bảng + Giới thiệu định lý về thể tích khối chóp + Thể tích của khối chóp có thể bằng tổng thể tích của các khối chóp, khối đa diện. + Yêu cầu học sinh nghiên cứu Ví dụ1 (SGK trang 24) H4: So sánh thể tích khối chóp C. A’B’C’ và thể tích khối lăng trụ ABC. A’B’C’? H5: Suy ra thể tích khối chóp C. ABB’A’? Nhận xét về diện tích của hình bình hành ABFE và ABB’A’? H6: Từ đó suy ra thể tích khối chóp C. ABEF theo V. H7: Xác định khối (H) và suy ra V (H) H8: Tính tỉ số =? * Phát phiếu học tập số 2: Ví dụ 2: bài tập 4 trang 25 SGK. * Hướng dẫn học sinh giải và nhấn mạnh công thức để học sinh áp dụng vào giải các bài tập liên quan + Một học sinh nhắc lại chiều cao của hình chóp. Suy ra chiều cao của khối chóp. + Học sinh ghi nhớ công thức. + Học sinh suy nghĩ trả lời: VC.A’B’C’= 1/3 V VC. ABB’A’= 2/3V E’ E’ SABFE= ½ SABB’A’ E’ =1/2 Học sinh thảo luận nhóm và nhóm trưởng trình bày. Phương án đúng là phương án B. A VA’. SB’C’= 1/3 A’I’.SS.B’C’ VA.SBC= 1/3 AI.SSBC III.T/t khối chóp 1. Định lý: (SGK) 2. Ví dụ C A E B F C’ A’ B’ F’ S I’ C’ A’ I B’ C B 4.Củng cố : Giáo viên hướng dẫn học sinh nhắc lại a.Công thức tính thể tích khối hộp chữ nhật, khối lăng trụ, khối chóp. Phương pháp tính thể tích khối lăng trụ, khối chóp 5 Bài tập về nhà: Giải các bài tập 1,2,3,5,6 SGK V. Phụ lục: 1. Phiếu học tập : a. Cho (H) là khối lăng trụ đứng tam giác đều có tất cả các cạnh bằng a, thể tích (H) bằng: A. B. C. D. b. Cho tứ diện ABCD, gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ diện AB’C’D và khối ABCD bằng: A. B. C. D. 2. Bảng phụ: Vẽ các hình 1.25; 1.26 ; 1.28 trên bảng phụ Tiết 7 - 8 . BÀI TẬP THỂ TÍCH KHỐI ĐA DIỆN Ngày soạn 5.10.2008 I. Mục tiêu : 1- Về kiến thức : * Biết cách tính thể tích của một số khối đa diện : Khối chóp, khối lăng trụ * Biết cách tính tỉ số thể tích của hai khối đa diện 2- Về kỹ năng: * Sử dụng thành thạo công thức tính thể tích và kỹ năng tính toán * Phân chia khối đa diện 3- Về tư duy và thái độ * Rèn luyện trí tưởng tượng hình học không gian . Tư duy lôgic * Rèn luyện tính tích cực của học sinh II. Chuẩn bị của giáo viên và học sinh 1. Giáo viên : Bảng phụ , thước kẻ , phấn trắng , phấn màu 2. Học sinh : Thước kẻ , giấy III. Phương pháp : Gợi mở và vấn đáp IV. Tiến trình bài học 1. Ổn định tổ chức : Điểm danh 2. Kiểm tra bài cũ : Nêu công thức tính thể tích của khối chóp và khối lăng trụ , khối hộp chữ nhật , khối lập phương . 3. Bài mới Hoạt động 1 : Bài tập 1 /25(sgk) Tính thể tích khối tứ diện đều cạnh a Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng H1: Nêu công thức tính thể tích của khối tứ diện ? H2: Xác định chân đường cao của tứ diện ? * Chỉnh sửa và hoàn thiện lời giải * Trả lời các câu hỏi của giáo viên nêu * Học sinh lên bảng giải A B D H C Hạ đường cao AH VABCD = SBCD.AH Vì ABCD là tứ diện đều nên H là tâm của tam giác BCD H là trọng tâm Do đó BH = AH2 = a2 – BH2 = a2 VABCD = a3. Hoạt động2: Bài tập 3/25(sgk) Cho hình hộp ABCD.A’B’C’D’ . Tính tỉ số thể tích của khối hộp đó và thể tích của khối tứ diện Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Đặt V1 =VACB’D’ V= thể tích của khối hộp H1: Dựa vào hình vẽ các em cho biết khối hộp đã được chia thành bao nhiêu khối tứ diện , hãy kể tên các khối tứ diện đó ? H2: Có thể tính tỉ số ? H3: Có thể tính V theo V1 được không ? H4: Có nhận xét gì về thể tích của các khối tứ diện D’ADC , B’ABC, AA’B’D’,CB’C’D’ *Trả lời câu hỏi của GV * Suy luận V = VD’ADC + VB’ABC +VAA’B’D’+ VCB’C’D’ + V1 * Suy luận VD’ADC = VB’ABC = VAA’B’D’ = VCB’C’D’ = V * Dẫn đến : V = 3V1 D C A B D’ C’ A’ B’ Gọi V1 = VACB’D’ V là thể tích hình hộp S là diện tích ABCD h là chiều cao V = VD’ADC + VB’ABC +VAA’B’D’+ VCB’C’D’ + V1 Mà VD’ADC = VB’ABC = VAA’B’D’ = VCB’C’D’= n ên : V ậy : Tiết 8: Ngày soạn 5.10.2008 Hoạt động 3: Bài tập 5/26(sgk) Cho tam giác ABC vuông cân ở A AB = a . Trên đường thẳng qua C và vuông góc với (ABC) lấy diểm D sao cho CD = a . Mặt phẳng qua C vuông góc với BD cắt BD tại F và cắt AD tại E . Tính thể tích khối tứ diện CDEF Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng H1: Xác định mp qua C vuông góc với BD H2: CM : H3: Tính VDCEF bằng cách nào? * Dựa vào kết quả bài tập 5 hoặc tính trực tiếp H4: Dựa vào bài 5 lập tỉ số nào? H5: dựa vào yếu tố nào để tính được các tỉ số H5: Tính thể tích của khối tứ diện DCBA * GV sửa và hoàn chỉnh lời giải * Hướng dẫn học sinh tính VCDEF trực tiếp ( không sử dụng bài tập 5) * Trả lời câu hỏi GV * xác định mp cần dựng là (CEF) * vận dụng kết quả bài tập 5 * Tính tỉ số : * học sinh trả lời các câu hỏi và lên bảng tính các tỉ số * học sinh tính VDCBA D F E B C A Dựng (1) dựng ta có : (2) Từ (1) và (2) * vuông cân tại C có E là trung điểm của AD (3) * * vuông tại C có (4) Từ (3) và (4) * * Hoạt đông4: Bài tập 6/26(sgk) Cho hai đường thẳng chéo nhau d và d’ đoạn thẳng AB có độ dài a trượt trên d . đoạn thẳng CD có độ dài b trượt trên d’ . Chứng minh rằng khối tứ diện ABCD có thể tích không đổi Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng * Gợi ý: Tạo sự liên quan của giả thiết bằng cách dựng hình bình hành BDCE trong mp (BCD) H1: Có nhận xét gì về VABCD và VABED? H2: Xác định góc giữa hai đường d và d’ * Chú ý GV giải thích sin H3: Xác định chiều cao của khối tứ diện CABE * Chỉnh sửa và hoàn thiện bài giải của HS * Trả lời các câu hỏi của GV đặt ra: + Suy diễn để dẫn đến VABCD = VABEC + Gọi HS lên bảng và giải A d B D E C d’ * Gọi h là khoảng cách của hai đường thẳng chéo nhau d và d’ * là góc giữa d và d’ không đổi * Trong (BCD) dựng hình bình hành BDCE * VABCD=VABEC * Vì d’//BE Và h là khoảng cách từ d’đến mp(ABE) h không đổi * = * VABCD Không đổi Hoạt động 5: giải bài toán 6 bằng cách khác ( GV gợi ý dựng hình lăng trụ tam giác ) V. Củng cố toàn bài + Nắm vững các công thức thể tích + Khi tính thể tích của khối chóp tam giác ta cần xác định mặt đáy và chiều cao để bài toán đơn giản hơn + Khi tính tỉ số thể tích giữa hai khối ta có thể tính trực tiếp hoặc tính gián tiếp VI) Bài tập về nhà : Bài1: Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A , AC = b , góc ACB = 60o . Đường thẳng BC’ tạo với mp (AA’C’C) một góc 30o Tính độ dài đoạn thẳng AC’ Tính thể tích của khối lăng trụ Bài2: Hãy chia một khối tứ diện thành hai khối tứ diện sao cho tỉ số thể tích của hai khối tứ diện này bằng một số k > 0 cho trước ÔN TẬP CHƯƠNG I Ngày soạn 23.10.2008 I. Mục tiêu: 1. Kiến thức : Học sinh phải nắm được: Khái niệm về đa diện và khối đa diện Khái niệm về 2 khối đa diện bằng nhau. Đa diện đều và các loại đa diện. Khái niệm về thể tích khối đa diện. Các công thức tính thể tích khối hộp CN. Khối lăng trụ .Khối chóp. 2. Kỹ năng: Học sinh Nhận biết được các đa diện & khối đa diện. Biết cách phân chia và lắp ghép các khối đa diện để giải các bài toán thể tích. Hiểu và nhớ được các công thức tính thể tích của các khối hộp CN. Khối LTrụ. Khối chóp. Vận dụng được chúng vào việc giải các bài toán về thể tích khối đa diện. 3. Tư duy thái độ: Biết tự hệ thống các kiến thức cần nhớ. Tự tích lũy một số kinh nghiệm giải toán II. Chuẩn bị của Giáo viên & Học sinh: 1. Giáo viên:Giáo án, bảng phụ ( hình vẽ bài 6, 10, 11, 12 ) 2. Học sinh: Chuẩn bị trước bài tập ôn chương I III. Phương pháp: Phát vấn , Gợi mở kết hợp hoạt động nhóm. IV. Tiến trình bài học: 1. Ổn định tổ chức lớp: Sĩ số, tác phong. TIẾT 9 Hoạt động 1: trả lời trắc nghiệm HS 1: Giải các câu trắc nghiệm 1, 3, 5, 7, 9 ( Có giải thích hoặc lời giải ) HS 2: Giải các câu trắc nghiệm 2, 4, 6, 8, 10 ( Có giải thích hoặc lời giải ) HS 3: Bài 11: 3. Bài mới: HOẠT ĐỘNG 2: Bài tập 6 Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Bài6 (sgk/26) Hs đọc đề, vẽ hình. sau khi kiểm tra hình vẽ một số h

File đính kèm:

  • docDuc toan.doc