Giáo án lớp 12 môn Hình học - Tiết 1 - 2 - Bài 1: Khái niệm về khối đa diện - Hoàng Sĩ Quyển

1) Kiến thức:

- Hiểu được khái niệm thế nào là một khối hộp chữ nhật, khối lăng trụ, khối chóp, khối chóp cụt. Từ đó hình dung được thế nào là một hình đa diện, điểm trong và điểm ngoài của chúng.

- Biết được thế nào là hai đa diện bằng nhau.

- Biết cách phân chia và lắp ghép các khối đa diện đơn giản.

2) Kĩ năng: học sinh biết vận dụng lí thuyết vào làm các bài tập sách giáo khoa.

II> PHƯƠNG PHÁP PHƯƠNG TIỆN

1) Kiến thức liên quan đến bài trước: là các hình trụ và hình chóp.

 

doc18 trang | Chia sẻ: manphan | Lượt xem: 866 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Hình học - Tiết 1 - 2 - Bài 1: Khái niệm về khối đa diện - Hoàng Sĩ Quyển, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Bài soạn: Chương I : khối đa diện Bài 1: khái niệm về khối đa diện Tiết Ngày soạn:................................... Địa điểm: ...................................... mục tiêu Kiến thức: Hiểu được khái niệm thế nào là một khối hộp chữ nhật, khối lăng trụ, khối chóp, khối chóp cụt. Từ đó hình dung được thế nào là một hình đa diện, điểm trong và điểm ngoài của chúng. Biết được thế nào là hai đa diện bằng nhau. Biết cách phân chia và lắp ghép các khối đa diện đơn giản. 2) Kĩ năng: học sinh biết vận dụng lí thuyết vào làm các bài tập sách giáo khoa. phương pháp phương tiện Kiến thức liên quan đến bài trước: là các hình trụ và hình chóp. Phương pháp: dựa trên các hình ảnh thực tế về khối đa diện từ đó xây dựng lên các khái niệm Phương tiện: sử dụng thêm các hình ảnh hoặc mô hình các khối đa diện để minh họa. tiến trình bài dạy Tiết 1 1. ổn định tổ chức Kiểm tra sĩ số 2. Bài mới Hoạt động 1: Hình thành khái niệm về khối lăng trụ và khối chóp. Hoạt động của GV Hoạt động của HS Nội dung trình bày - Hình thành khái niệm khối lăng trụ và khối chóp. - Nêu cách gọi tên. - điểm trong và điểm ngoài - Làm hoạt động 1 (SGK) - Theo giõi sự hướng dẫn của giáo viên để hình thành các khái niệm. - lấy các ví dụ. Khối lăng trụ ABCDE.A’B’C’D’E’. Hoạt động 2: khái niệm về hình đa diện và khối đa diện. Hoạt động của GV Hoạt động của HS Nội dung trình bày - nhận xét về các mặt ABA’B’ và DED’E’, ABB’A’ và BCC’B’, ABS và CDS. - Nêu khái niệm về hình đa diện. Từ khái niệm về khối lăng trụ và khối chóp cho học sinh trình bày khái niệm về khối đa diện. Nêu khái niệm về điểm trong điểm ngoài và miền trong miền ngoài. - Làm hoạt động 2 (SGK) - Học sinh nhận xét về số điểm chung. - lấy các ví dụ. Trình bày khái niệm về khối đa diện. Làm ví dụ (SGK) Làm hoạt động 3. 1. Khái niệm về hình đa diện. Phần làm bài của học sinh Khái niệm hình đa diện (SGK) 2. Khái niệm về khối đa diện Khái niệm(SGK) Hoạt động 3: Hình thành khái niệm hai đa diện bằng nhau. Hoạt động của GV Hoạt động của HS Nội dung trình bày - Trình bày khái niệm phép dời hình trong mặt phẳng ? - Nêu phép dời hình trong không gian. - Trình bày một số phép dời hình đã học ? - Vẽ hình minh họa cho từng phần, chú ý học sinh các khái niệm mặt phẳng đối xứng, tâm đối xứng, trục đối xứng. - Cho học sinh nhận xét một hình thực hiện liên tiếp nhiều phép dòi hình thì có đặc điểm gì? - Hướng dẫn ví dụ( thay phép đối xứng tâm bằng phép đối xứng qua mặt phẳng) - Trình bày khái niệm phép dời hình trong mặt phẳng. - Học sinh trả lời. - Học sinh trả lời - Dựa và kiến thức về phép dời hình học sinh trình bày khái niệm về hai hình bằng nhau. - học sinh làm hoạt động 4 1. Phép dời hình trong không gian Khái niệm (SGK) a) Phép tịnh tiến theo vectơ b) Phép đối xứng qua mặt phẳng (P) c) Phép đối xứng tâm O d) Phép đối xứng qua đường thẳng Nhận xét(SGK) 2. Hai hình bằng nhau Khái niệm(SGK) Phần làm bài của học sinh 3. Củng cố toàn bài - củng cố khái niệm về khối lăng trụ, khối chóp, khối đa diện. 4. Bài tập về nhà Bài 1,2,3,4 trang 12 Tiết 2 1. ổn định tổ chức Kiểm tra sĩ số 2. Bài mới Hoạt động 1: Phân chia và lắp ghép các khối đa diện Hoạt động của GV Hoạt động của HS Nội dung trình bày - lấy các ví dụ ta phân chia và lắp ghép các khối đa diện ? ( cắt một chiếc bánh, lắp một chi tiết máy...) - hướng dẫn học sinh ví dụ SGK - Học sinh trả lời - Thực hiện việc chia khối lập phương thành các hình tứ diện. - Đưa hình ảnh minh học phân chia các khối đa diện. - Nhận xét: Một khối đa diện bất kì luôn có thể phân chia được thành những khối tứ diện Hoạt động 2: Hướng dẫn làm các bài tập sách giáo khoa. Hoạt động của GV Hoạt động của HS Nội dung trình bày 1. kiểm tra bài cũ - Khái niệm về khối đa diện và hai hình đa diện bằng nhau ? 2. Bài tập - Bài 1: Gợi ý học sinh về quan hệ giữa số cạnh và số mặt trong một hình đa diên. - Bài 2: Gợi ý về quan hệ giữa các đỉnh và các cạnh của hình đa diện. - Trả lời câu hỏi - Học sinh trình bày và lấy ví dụ - học sinh dựa trên các phần gợi ý và trình bày cách giải Bài 1: Gọi đa diện có m mặt vậy m mặt có số cạnh là 3m, Số cạnh của đa diện là: Vì c là số nguyên vậy m là số chẵn. Bài 2: Gọi đa diện (H) có n đỉnh là A1, A2, ... An, số mặt đi qua mỗi đỉnh tương ứng là m1, m2, ... mn, vậy mỗi đỉnh Ak có mk cạnh đi qua. Tổng số các cạnh của đa diện (H) là: Vì c nguyên, mk là những số lẻ vậy n là số chẵn. Bài 3: Năm tứ diện là: AA’B’D’, DD’CA, CB’C’D’, ABB’C, ACB’D’. Bài 4: Sáu hình tứ diện là: AA’CD, A’DD’C, A’D’C’C, A’C’B’C, A’CBA, A’CB’B. 3. Củng cố toàn bài - củng cố quan hệ giữa các cạnh, các đỉnh và các mặt trọng hình đa diện, cách chia hình đa diện thành các hình tứ diện. 4. Bài tập về nhà Đọc trước bài khối đa diện lồi và khối đa diện đều. nhận xét và rút kinh nghiệm: Ngày..........tháng............năm 20 Bài 2: khối đa diện lồi và khối đa diện đều Tiết Ngày soạn:................................... Địa điểm: ...................................... i> mục tiêu Kiến thức: Nắm được định nghĩa khối đa diện lồi. Hiểu được thế nào là một khối đa diện đều. Nhận biết được các loại khối đa diện đều. 2) Kĩ năng: học sinh biết vận dụng lí thuyết vào làm các bài tập sách giáo khoa. phương pháp phương tiện Kiến thức liên quan đến bài trước: khối đa diện. Phương pháp: Hướng dẫn học sinh xây dựng khái niệm khối đa diện lồi và khối đa diện đều từ khái niệm đa giác lồi và đa giác đều. Phương tiện: sử dụng thêm các hình ảnh hoặc mô hình các khối đa diện đều để minh họa. tiến trình bài dạy Tiết thứ 3 1. ổn định tổ chức Kiểm tra sĩ số 2. Bài mới Hoạt động 1: Hình thành khái niệm về khối đa diện lồi. Hoạt động của GV Hoạt động của HS Nội dung trình bày - Trình bày khái niệm về đa giác lồi và đa giác đều. - Nêu khái niệm về đa diện lồi. - Chú ý khối đa diện là khối đa diện lồi khi và chỉ khi miền trong của nó luôn nằm về một phía của mặt phẳng chứa một mặt của nó. - Trả lời câu hỏi - thực hiện hoạt động 1. I – Khối đa diện lồi Khái niệm (SGK) ví dụ: hình tứ diện, hình lăng trụ, ... Khối lăng trụ ABCDE.A’B’C’D’E’. Hoạt động 2 : Hình thành khái niệm khối đa diện đều. Hoạt động của GV Hoạt động của HS Nội dung trình bày - Từ định nghĩa về đa giác đều dẫn tới khái niệm về đa diện đều. - giới thiệu về các loại đa diện đều(gồm năm loại) dùng bảng phụ - hướng dẫn học sinh làm hoạt động 3 và 4. - Làm hoạt động 1 (SGK) - làm hoạt động 2 (SGK) - làm hoạt động 3 - Làm hoạt động 4 II – Khối đa diện đều Định nghĩa (SGK) Phần làm bài của học sinh ví dụ : a) Phần chứng minh của học sinh b) Phần chứng minh của học sinh 3. Củng cố toàn bài - Củng cố khái niệm về đa diện lồi và đa diện đều. 4. Bài tập về nhà - Làm các bài tập 1, 2, 3, 4 Trang 18 - Chuẩn bị cắt giấy làm bài tập 1 Tiết thứ 4 1. ổn định tổ chức Kiểm tra sĩ số 2. Bài mới Hoạt động của GV Hoạt động của HS Nội dung trình bày - Hướng dẫn học sinh cách tính diện tích toàn phần của hình H và hình H’ - hướng dẫn học sinh cách vẽ hình và thực hiện cách tích các cạnh của hình tứ diện EFGH. - hướng dẫn học sinh cách chứng minh - Học sinh thực hiện các phép tính và lập tỉ số. - Học sinh vẽ hình và thực hiện việc tính độ dài các cạnh của hình tứ diện EFGH. Bài 1 : học sinh trưng bày các sản phẩm sau khi đã cắt dán. Bài 2: Gọi hình lập phương là H có độ dài một cạnh là a và hình bát diện là H’ Diện tích mỗi mặt của H’ là : Diện tích toàn phần của H’ là : Diện tích toàn phần của H là : 6a2 Vậy tỉ số diện tích toàn phần của H và H’ là: Bài 3: Gọi tứ diện đều ABCD có cạnh là a, vậy tứ diện EFGH có các cạnh là , vậy tứ diện EFGH là tứ diện đều. Bài 4: 3. Củng cố toàn bài - Củng cố khái niệm về đa diện lồi và đa diện đều. 4. Bài tập về nhà Đọc bài đọc thêm và xem trước bài khái niệm về thể tích của khối đa diện. nhận xét và rút kinh nghiệm: Ngày ............tháng.......năm...... Bài 3: khái niệm về thể tích khối đa diện Tiết Ngày soạn:................................... Địa điểm: ...................................... i> mục tiêu Kiến thức: - Hiểu được khái niệm về thể tích khối đa diện. - Nắm được các công thức tính thể tích của khối hộp chữ nhật, khối lăng trụ, khối chóp, vận dụng được chúng vào làm các bài toán tính thể tích. 2) Kĩ năng: Học sinh hiểu khái niệm thể tích của vật và vận dụng linh hoạt các công thức tính thể tích đơn giản. II> phương pháp phương tiện Kiến thức liên quan đến bài trước: khối đa diện, khối đa diện lồi và khối đa diện đều. Phương pháp: Trình bày khái niện về thể tích các hình đa diện và nêu ra các công thức tính thể tích của một số hình hay gặp. Phương tiện: sử dụng thêm các hình ảnh hoặc mô hình các khối đa diện để minh họa. III> tiến trình bài dạy Tiết thứ 5 1. ổn định tổ chức Kiểm tra sĩ số 2. Bài mới Hoạt động 1: Hình thành khái niệm về thể tích của khối đa diện. Hoạt động của GV Hoạt động của HS Nội dung trình bày - nêu khái niệm về thể tích khối đa diện. - có bao nhiêu cách xác định thể tích của các khối đa diện? - học sinh suy nghĩ và trả lời. - Số đo độ lớn của phần không gian mà khối đa diện chiếm chỗ. - có nhiều cách xác định thể tích: + chia nhỏ + nhúng nước + dùng công thức Hoạt động 2: Hình thành công thức tính thể tích khối đa diện. Hoạt động của GV Hoạt động của HS Nội dung trình bày - khi đo độ dài ta có độ dài đơn vị vậy khi đo thể tích ta có khối lập phương đơn vị. - Nêu các tính chất về thể tích của khối đa diện (H). - Hướng dẫn học sinh thực hiện các hoạt động. - từ đơn vị đo độ dài hình thành đơn vị đo thể tích. - học sinh làm các hoạt động trong sách giáo khoa. I. Khái niệm về thể tích của khối đa diện. Cho hình khối đa diện (H) thể tích là V(H) thỏa mãn các tính chất: a) (H) là khối LP cạnh 1 thì V(H)=1 b) Hai khối đa diện (H) và (H’) bằng nhau thì V(H)= V(H’) c) Nếu khối đa diện (H) chia thành hai khối đa diện (H1) và (H2) thì V(H)=V(H)+V(H) Ví dụ: (phần thực hiện của học sinh làm các hoạt động) Định lí: Thể tích của một khối hộp chữ nhật bằng tích ba kích thước của nó. 3. Củng cố toàn bài - Củng cố khái niệm thể tích khối đa diện và hình thành cách tính thể tích các khối đa diện. 4. Bài tập về nhà - Đọc trước về cách xác định thể tích khối lăng trụ và thể tích khối chóp. Tiết thứ 6 1. ổn định tổ chức Kiểm tra sĩ số 2. Bài mới Hoạt động 1: Nêu công thức tính thể tích khối lăng trụ Hoạt động của GV Hoạt động của HS Nội dung trình bày - Từ công thức tính thể tích của hình hộp chữ nhật dẫn tới công thức tính thể tích của khối lăng trụ. - Hình thành công thức tính thể tích của khối lăng trụ. II- Thể tích khối lăng trụ Định lí: Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là: V=Bh Hoạt động 2: Nêu công thức tính thể tích khối chóp. Hoạt động của GV Hoạt động của HS Nội dung trình bày - Nêu công thức tính thể tích của khối chóp . - Hướng dẫn học sinh vẽ hình và làm hoạt động 4. - Hướng dẫn học sinh cách làm ví dụ (SGK) - tiếp nhận công thức tính thể tích khối chóp. - Học sinh làm hoạt động 4. - Làm ví dụ (SGK) III- Thể tích khối chóp Định lí : Thể tích khối chóp có diện tích đáy B và chiều cao h là : Hoạt động 4 : (phần làm bài của học sinh) Ví dụ:(SGK) 3. Củng cố toàn bài - Củng cố các công thức tính thể tích khối lăng trụ và khối chóp. 4. Bài tập về nhà Làm các bài tập 1,2,3,4 trang 25. Tiết thứ 7 1. ổn định tổ chức Kiểm tra sĩ số 2. Bài mới Hoạt động 1: Kiểm tra bài cũ. Hoạt động của GV Hoạt động của HS Nội dung trình bày - Nêu các công thức tính thể tích hình lăng trụ và thể tích hình chóp. Phần làm bài của học sinh Hoạt động 2: Làm các bài tập. Hoạt động của GV Hoạt động của HS Nội dung trình bày - từ công thức tính thể tích hướng dẫn học sinh cách tính diện tích đáy và chiều cao của hình tứ diện. - Hướng dẫn học sinh chia hình đã cho thành hai hình chóp tứ giác sau đó tính thể tích của hình chóp tứ giác cạnh a. - Hướng dẫn học sinh cách tính thể tích của khối tứ diện ACB’D’. - Hướng dẫn dựa vào công thức tính thể tích, chú ý lấy các đỉnh là A và A’ học sinh làm bài. - học sinh làm bài Bài 1 : (đvtt) Bài 2 : (đvtt) Bài 3 : Bài 4 : 3. Củng cố toàn bài - Củng cố các công thức tính thể tích khối chóp và khối lăng trụ. 4. Bài tập về nhà - Làm các bài tập 5, 6 Trang 19 Tiết thứ 8 1. ổn định tổ chức Kiểm tra sĩ số 2. Bài mới Hoạt động 1: Kiểm tra bài cũ. Hoạt động của GV Hoạt động của HS Nội dung trình bày - Viết các công thức tính thể tích của khối lăng trụ và khối chóp. Hoạt động 2: Làm các bài tập. Hoạt động của GV Hoạt động của HS Nội dung trình bày - Trình bày công thức tính thể tích của hình DEFC ? - Hướng dẫn cách tính các đoạn thẳng CE, EF, CF, DF. - Hướng dẫn học sinh dựng hình và định hướng cách chứng minh. Bài 5 : Bài 6 : Gọi khoảng cách giữa hai đường thẳng d và d’ là h và góc giữa hai đường thẳng là a vậy ta có: Từ 3 điểm ABC dựng hình bình hành ABCF, từ 3 điểm ACD dựng hình bình hành ABDE. 3. Củng cố toàn bài - Củng cố công thức tính thể tích của các khối lăng trụ và khối đa diện. 4. Bài tập về nhà - Làm các bài tập 1, 2, 3, 4, 5, 6, 7, 8 Trang 26 - ôn tập các phần lí thuyết trong chương. nhận xét và rút kinh nghiệm: Ngày ............tháng.......năm...... ôn tập chương I Tiết Ngày soạn:................................... Địa điểm: ...................................... i> mục tiêu Kiến thức: ôn lại các khái niệm Khái niệm về đa diện và khối đa diện. Khái niệm về hai đa diện bằng nhau. Phân chia và lắp ghép các khối đa diện. Khái niệm về thể tích các khối đa diện và các công thức tính thể tích khối hộp chữ nhật, khối lăng trụ, khối chóp. Kĩ năng: Nhận biết được các đa diện và khối đa diện. Biết cách phân chia và lắp ghép các khối đa diện để giải các bài toán thể tích. Hiểu và nhớ được các công thức tính thể tích của các khối hộp chữ nhật,... ii> phương pháp phương tiện a) Phương pháp: Củng cố lại lí thuyết, hướng dẫn học sinh làm các bài tập. b) Phương tiện: sử dụng thêm các hình ảnh hoặc mô hình các khối đa diện đều để minh họa. iii> tiến trình bài dạy Tiết thứ 9 1. ổn định tổ chức Kiểm tra sĩ số 2. Bài mới Hoạt động 1: Hình thành khái niệm về khối đa diện lồi. Hoạt động của GV Hoạt động của HS Nội dung trình bày - Cho học sinh trả lời các câu lí thuyết từ 1 đến 4. Hoạt động 2: Hình thành khái niệm khối đa diện đều. Hoạt động của GV Hoạt động của HS Nội dung trình bày - Nêu công thức xác định đường cao trong một tam giác vuông ? - Hướng dẫn học sinh xây dựng công thức đường cao trong một hình chóp ? - dựa vào các gợi ý để làm bài. Bài 5(26) Ta có : Bài 6(26) Gọi G là trọng tâm của tam giác ABC, và mặt phẳng đi qua BC và vuông góc với AS cắt AS tại E. Ta có : Bài 7 : (26) Gọi H là chân đường cao hạ từ đỉnh S xuống mặt phẳng (ABC). Vì các mặt bên đều hợp với đáy một góc bằng 600 vậy H là tâm đường tròn nội tiếp của tam giác ABC. , Vậy : (đvtt) 3. Củng cố toàn bài - Củng cố phương pháp tính thể tích của hình chóp và hình lăng trụ. 4. Bài tập về nhà - Làm các bài tập 8, 9, 10, 11, 12 Trang 26 Tiết thứ 10 1. ổn định tổ chức Kiểm tra sĩ số. 2. Bài mới Hoạt động của GV Hoạt động của HS Nội dung trình bày - Vẽ hình. - gợi ý học sinh cách chứng minh: . - Hướng dẫn học sinh sử dụng công thức đường cao trong tam giác vuông tính AB’, AD’, AC’. Dựa trên công thức tính thể tích tính thể tích khối chóp. Vẽ hình. Chứng minh AC’ vuông góc với SC. tính diện tích hình AB’C’D’. tính thể tích hình chóp Bài 8 : (26) Từ (1) và (2)=> Tương tự : từ đó suy ra : Theo tính chất về đường cao trong tam giác vuông: Từ đó suy ra: Ta có: Vậy: Từ đó suy ra: Bài 9(26): Gọi O là tâm hình vuông ABCD, I là giao điểm của AM và SO, vậy ta có Vì: nên SAC là tam giác đều cạnh bằng . Do đó: . Ta có: Vì : Vậy: Tiết thứ 11 1. ổn định tổ chức Kiểm tra sĩ số 2. Bài mới Hoạt động của GV Hoạt động của HS Nội dung trình bày - nhận xét tỉ số giữa thể tích của tứ diện A’BB’C và thể tích ABC.A’B’C’. - hướng dẫn cách xây dựng công thức tính thể tích của hình chóp C.A’B’FE. - Hướng dẫn học sinh vẽ thiết diện của hình hộp. - cho học sinh nhận xét về tính đối xứng của hai khối đa diện. - Hướng dẫn học sinh cách chia một khối đa diện thành nhiều các khối đa diện và áp dụng thể tích của khối đa diện ban đầu bằng tổng thể tích của các khối đa diện sau khi chia. - Dựa vào các gợi ý để làm bài. Bài 10 :(27) a) (đvtt) b) Gọi h là chiều cao hạ từ đỉnh C xuống mặt phẳng A’B’EF vậy ta có : Bài 11 : Mặt phẳng (CEF) cắt hình hộp theo thiết diện là tứ giác CEA’F. Vậy mặt phẳng (CEF) chia hình hộp thành hai phần bằng nhau đối xứng với nhau qua tâm O. Vậy tỉ số thể tích bằng 1. Bài 12 : (đvtt) 3. Củng cố toàn bài - Củng cố khái niệm về đa diện lồi, đa diện đều và công thức tính thể tích. 4. Bài tập về nhà - Làm các bài tập trắc nghiệm cuối chương. - Đọc trước bài khái niệm về mặt tròn xoay. - chuẩn bị làm bài kiểm tra 1 tiết IV> nhận xét và rút kinh nghiệm: Ngày ............tháng.......năm......

File đính kèm:

  • docGA HINH 12CB Chuong I.doc