Giáo án lớp 12 môn Hình học - Tiết 21-22: Ôn tập học kỳ I

. Kiến thức: HS nắm được:

- Khái niệm đa diện đều và các loại đa diện.

- Các phương pháp c/m đt vuông góc với mp.

- Các công thức tính thể tích khối hộp, khối lăng trụ, khối chóp.

2. Kỹ năng:

- Biết c/m đường thẳng vuông góc với mp.

- Vận dụng thành thạo các CT tính thể tích của các khối hộp CN, khối

 

doc3 trang | Chia sẻ: manphan | Lượt xem: 927 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Hình học - Tiết 21-22: Ôn tập học kỳ I, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: Tiết 21-22 ÔN TẬP HỌC KỲ I. I. Mục tiêu: 1. Kiến thức: HS nắm được: - Khái niệm đa diện đều và các loại đa diện. - Các phương pháp c/m đt vuông góc với mp. - Các công thức tính thể tích khối hộp, khối lăng trụ, khối chóp. 2. Kỹ năng: - Biết c/m đường thẳng vuông góc với mp. - Vận dụng thành thạo các CT tính thể tích của các khối hộp CN, khối l/trụ, khối chóp vào việc giải các bài toán về thể tích khối đa diện. 3. Tư duy, thái độ: - Biết tự hệ thống các kiến thức cần nhớ. - Tự tích lũy một số kinh nghiệm giải toán. II. Chuẩn bị của GV và HS: 1. Chuẩn bị của GV: Thước, SGK, bảng phụ,.. 2. Chuẩn bị của HS: Ôn lại chương I, làm bài trước ở nhà. III. Phương pháp: Thuyết trình, gợi mở, vấn đáp, nêu vấn đề. IV.Tiến trình lên lớp: 1. Ổn định: Kt sĩ số 2. Kt bài cũ: 3. Vào bài: H Đ GV H Đ HS NỘI DUNG + CM: CDAB + CM: BDAC (t/ tự) + Nêu công thức tính thể tích của khối tứ diện ? + Tính AH? ( Gọi I là trung điểm CD ) + Tính SBCD ? + Tính VABCD? + Nêu ct tính thể tích của khối chóp tứ giác S.ABCD? + Tính SABCD ? + Tính SH? + Tính VS.ABCD ? + Suy ra thể tích của khối bát diện đều cạnh a? + Nêu ct tính thể tích của S.ABC? + Tính SABC? + Tính SH? + Tính VS.ABC? + Hãy xác định góc giữa SC và mặt đáy? + Tính độ dài đ/ cao SA? + Xác định thể tích của khối chóp S.ABCD? +Xác định và tính đường cao của khối chóp M.BCD? + Xác định thể tích của khối chóp M.ABCD? + Gọi H là tâm tam giác BCD => AH (BCD) => AH CD Ta có: BH CD Vậy CD AB + Ta có: VABCD = SBCD.AH + Trong tam giác đều BCD cạnh 2a thì: BI = 2a. = a Do đó: BH = BI = =>AH2 = AB2 – BH2 = a2 =>AH = + SBCD =CD.BI = a = a2 + Vậy VABCD = + Gọi H là giao điểm của 2 đường chéo AC và BD. => SH (ABCD) => V = Bh = SABCD . SH + SABCD = a2 + Xét SAH vuông tại H, ta có: SH2 = SA2 – AH2 = a2 - = (với SA = a; AH = ) => SH = + VS.ABCD = = + ĐS: V = + Gọi H là tâm tam giác ABC => SH (ABC) => VS.ABC = SABC.SH + Gọi M là trung điểm BC. Ta có AM = a. SABC = AM.BC = + Ta có: SH = AH. tan 300 = Vậy VS.ABC = + Vì SA vuông góc với mặt đáy nên góc giữa SC và m/đáy là + + Ta có: Vậy + Kẻ S A D C M B Ta có: = + *Bài 1: Cho tứ diện đều ABCD có cạnh bằng 2a. a) CMR: CDAB và BD AC b) Tính thể tích của khối tứ diện ABCD. Giải A B D H I C a) Gọi H là tâm tam giác BCD => AH (BCD) => AH CD Ta có: BH CD Vậy CD AB Tương tự: BD AC b) ĐS: VABCD = *Bài 2: Tính thể tích của khối chóp tứ giác đều có tất cả các cạnh bằng a. a H S D C A ĐS: V = *Bài 3: Cho khối chóp đều S.ABC có đáy là tam giác đều cạnh bằng a, các cạnh bên tạo với đáy 1 góc 300. Tính thể tích của khối chóp đó. Giải a M H C B A ĐS: VS.ABC = *Bài 4: Cho hình chóp S.ABCD có ABCD là hình vuông cạnh 2a, SA vuông góc với mặt đáy. Góc giữa SC và mặt đáy bằng . a. Tính thể tích của khối chóp S.ABCD. b. Gọi M là trung điểm của SB. Tính thể tích của khối chóp M.BCD. Giải H 4. Củng cố, dặn dò: - BT: Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, , SB = SD. Tính thể tích khối chóp S.ABCD. ĐS: - Hs về học chương I để tuần sau thi HKI và soạn trước bài 1 chương III.

File đính kèm:

  • docTiết 23 - 24 Ôn tập học ki 1.doc