Về kiến thức:
- Hệ thống các kiến thức cơ bản về mặt cầu và các mặt tròn xoay .
- Phân biệt được các khái niệm về mặt và khối nón, trụ, cầu và các yếu tố liên quan.
- Nắm vững các công thức tính diện tích xung quanh và thể tích của khối nón, khối trụ, công thức tính diện tích mặt cầu và thể tích khối cầu.
2 trang |
Chia sẻ: manphan | Lượt xem: 848 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Hình học - Tiết: 26: Ôn tập chương II, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 5 / 1 /2011
Tieát: 26
ÔN TẬP CHƯƠNG II
I. Mục tiêu:
+ Về kiến thức:
- Hệ thống các kiến thức cơ bản về mặt cầu và các mặt tròn xoay ...
- Phân biệt được các khái niệm về mặt và khối nón, trụ, cầu và các yếu tố liên quan.
- Nắm vững các công thức tính diện tích xung quanh và thể tích của khối nón, khối trụ, công thức tính diện tích mặt cầu và thể tích khối cầu.
+ Về kỹ năng:
- Xác định tâm, bán kính mặt cầu ngoại tiếp hình chóp. Phương pháp chứng minh 1 điểm thuộc mặt cầu, vị trí tương đối mặt cầu với đt, mp
- Vận dụng được các công thức vào việc tính diện tích xung quanh và thể tích của các khối : nón, trụ, cầu.
- Rèn luyện kĩ năng vẽ hình, tính toán cho học sinh.
+ Về thái độ:
- Cẩn thận , chính xaùc , tæ mæ
II. Chuẩn bị của giáo viên và học sinh:
+ Giáo viên:Giáo án, bảng phụ, phiếu học tập.
+ Học sinh: Dụng cụ học tập, SGK,...
III. Tiến trình bài học:
1. Ổn định tổ chức:
2. Kiểm tra bài cũ:
CH1: ĐN mặt cầu, Phương pháp chứng minh 1 điểm thuộc mặt cầu . Điều kiện mặt cầu ngoại tiếp hình chóp.
CH2: Ghi các công thức tính diện tích và thể tích các mặt và khối:nón, trụ, cầu.
Mặt nón-Khối nón
Mặt trụ-Khối trụ
Mặt cầu-Khối cầu
Diện tích
Sxq=
Sxq=
S=
Thể tích
V=
V=
V=
GV chính xác hóa kiến thức, đánh giá và ghi điểm.
3. Bài mới:
* Hoạt động 1:
Câu 1: Xét tính đúng sai của các mđ sau:
Hình chóp có mặt cầu ngoại tiếp khi chỉ khi đáy của nó là đa giác nội tiếp một đường tròn
Hình lăng trụ tam giác có cạnh bên vuông góc mặt đáy thì nội tiếp được trong một mặt cầu.
Qua điểm A cho trước có vô số tiếp tuyến của mặt cầu S(O,R)
Có vô số đường thẳng tiếp xúc mặt cầu S(O,R) tại 1 điểm.
Câu 2: Xét tính đúng sai của các mđ sau:
Mọi tứ diện luôn có mặt cầu ngoại tiếp.
Mọi hình chóp có cạnh bên bằng nhau đều có mặt cầu ngoại tiếp.
Mọi hình hộp đứng đều có mặt cầu ngoại tiếp.
4. Mọi hình hộp chữ nhật đều có mặt cầu ngoại tiếp.
Câu 3: Chứng minh trong số các hình hộp nội tiếp 1 mặt cầu bán kính R thì hình lập phương có thể tích lớn nhất.
Câu 4: Cho tứ diện đều ABCD có cạnh bằng a. Tính bán kính mặt cầu tiếp xúc các cạnh của tứ diện.
Hoạt động của giáo viên
Hoạt động của học sinh
Chia lớp thành 4 nhóm . Mỗi nhóm giải quyết 1 câu
Cho hs thaûo luaän
Quan sat vaø höôùng daãn
Nghe vaø hieåu nhieäm vuï
Trao ñoåi tìm ñaùp aùn
I
A
B
C
D
N
M
H
Hoạt động 2
Hoạt động của giáo viên
Hoạt động của học sinh
.
Cho lôùp nx
Söûa chöõa
Nhận xét đánh giá
-Tự giải và thảo luận câu nhóm mình và các câu còn lại
- Đáp án:
Đ, Đ, S , Đ
Đ, S, S , Đ
3.Gọi a,b,c là 3 cạnh hình hcn. Có a2+b2+c2=(2R)2 (1)
V=abc, Từ (1) a2b2c2 lớn nhất khi a = b = c. Vậy V lớn nhất khi hhộp là hình lphương
4. Nx: Trong tứ dịên đều ABCD các đoạn thẳng nối trung điểm các cạnh đối là các đường vuông góc chung, bằng nhau và chúng đồng quy tại trung điểm O của mỗi đường nên là tâm mặt cầu tx các cạnh tứ diện,vậy bkính mặt cầu R=
4 . Cuûng coá :
- Ñk ñeå hc , ht noäi tieáp maët caàu
- Dieän tích , theå tích hình truï , hình choùp
- Oân taäp lyù thuyeát vaø laøm caùc baøi taäp coøn laïi trong sgk
File đính kèm:
- Tiết 26 Ôn tập chương II.doc