Hãy cho nhận xét về lời giải sau
Cho hai điểm A, B cố định. Chứng minh rằng tập hợp những điểm M sao cho
MA MB nên gọi I là trung điểm của AB thì IM = IA = IB nên suy ra điều phải chứng minh.
7 trang |
Chia sẻ: manphan | Lượt xem: 884 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Hình học - Tiết 32 - Bài 1: Mặt cầu, khối cầu, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chương II: MẶT CẦU, MẶT TRỤ, MẶT NÓNĐịnh nghĩa m/cVí dụVTTĐ m/c-mp§ 1. MẶT CẦU, KHỐI CẦUTiết32Các ví dụ:VD 1 Cho hai điểm A, B cố định. Chứng minh rằng tập hợp những điểm M sao choMA . MB = 0là mặt cầu đường kính AB. BMAHãy cho nhận xét về lời giải sauGiả thiết MA . MB = 0 MA MB nên gọi I là trung điểm của AB thì IM = IA = IB nên suy ra điều phải chứng minh.I(SGK trang 39)Để làm xuất hiện Hãy quan sát hình sau và nhớ lại công thức trung điểm của đoạn thẳng về phương diện vectơ?BMAIGiải Gọi I là trung điểm của AB, ta có hệ thức véc tơ nào, hãy phân tích vectơ MA , MB ? MI2 – IA2 = 0 nên = MI2 – IA2.I là trung điểm của đoạn thẳng AB Gọi I là trung điểm của AB, ta có IA, IBMI = IA=IB.Vậy tập hợp những điểm M thỏa mãnĐẳng thức này cho ta thông tin gì? IA = - IBMA .MB = 0là mặt cầu đường kính AB.BMAIVD 1VD 2 Cho tam giác đều ABC có cạnh bằng a. Tìm tập hợp những điểm M sao cho MA2+MB2+MC2 = 2a2. BCAA’GMCác ví dụ:VD 2BCAA’GM* Gọi G là trọng tâm của tam giác ABC thì ta có hệ thức véc tơ nào?Hoạt động MA + MB + MC = 3 MG (*)G là trọng tâm của tam giác ABC* Hãy chứng minh rằng* Tính GA, GB, GC theo a?* Tính MG theo a?Hãy phát biểu kết quả của bài toán?MA2+MB2+MC2 = 2a2. Vậy tập hợp những điểm M thỏa mãn MA2+MB2+MC2 = 2a2. là mặt cầu S(G; r) vớiMặt khác, Gọi G là trọng tâm tam giác đều ABC, ta có Vậy tập hợp những điểm M thỏa mãn điều kiện đầu bài là mặt cầu S(G; r) với(1) (2) Từ (1) và (2) suy raGiảiVD 2nên
File đính kèm:
- Ví dụ.ppt