1. Kiến thức :
-Nắm được phép đối xứng qua mặt phẳng và sự bằng nhau của 2 khối đa diện.
-Hiểu được định nghĩa phép dời hình, phép đối xứng qua mặt phẳng và tính chất bảo toàn khoảng cách của nó.
2. Kĩ năng :
-Nhận biết được một mặt phẳng nào đó có phải là mặt phẳng đối xứng của 1 hình đa diện hay không.
-Nhận biết được 2 hình đa diện bằng nhau trong các trường hợp không phức tạp.
-Vận dụng được vào giải các bài tập SGK
3. Tư duy và thái độ:
-Cẩn thận, chính xác, tích cực trong học tập
2 trang |
Chia sẻ: manphan | Lượt xem: 1013 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Hình học - Tiết 6 - Luyện tập : Phép đối xứng qua mắt phẳng và sự bằng nhau của 2 khối đa diện, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TIẾT: 6 Ngày soạn: . . . . . . . . . . . . .
LUYỆN TẬP : PHÉP ĐỐI XỨNG QUA MẮT PHẲNG VÀ SỰ BẰNG NHAU CỦA 2 KHỐI ĐA DIỆN
I/MỤC TIÊU:
Kiến thức :
-Nắm được phép đối xứng qua mặt phẳng và sự bằng nhau của 2 khối đa diện.
-Hiểu được định nghĩa phép dời hình, phép đối xứng qua mặt phẳng và tính chất bảo toàn khoảng cách của nó.
Kĩ năng :
-Nhận biết được một mặt phẳng nào đó có phải là mặt phẳng đối xứng của 1 hình đa diện hay không.
-Nhận biết được 2 hình đa diện bằng nhau trong các trường hợp không phức tạp.
-Vận dụng được vào giải các bài tập SGK
Tư duy và thái độ:
-Cẩn thận, chính xác, tích cực trong học tập
II/CHUẨN BỊ CỦA GIÁO VIÊN – HỌC SINH:
Giáo viên: Giáo án, đồ dùng dạy học
Học sinh: Kiến thức cũ, bài tập, dụng cụ học tập.
III/PHƯƠNG PHÁP : Nêu vấn đề, giải thích, gợi mở
IV/TIẾN TRÌNH :
1-Kiểm tra bài cũ : (5 phút)
CH : Nêu định nghĩa phép đối xứng qua mặt phẳng, phép dời hình và 2 hình bằng nhau.
-Gọi học sinh nhận xét
-Nhận xét và đánh giá của giáo viên
2-Nội dung bài tập:
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
* HĐ1: Yêu cần học sinh làm bài tập 6/15 (SGK)?
(Gọi 4 HS làm 4 câu lần lượt : a, b, c, d)
-Gọi HS nhận xét từng câu
-Nhận xét và đánh giá
*HĐ2: yêu cầu học sinh làm bài tập 7/15 (SGK)
(Gọi 3 HS làm 3 câu lần lượt: a, b, c)
(GV: Giả sử ta gọi tên:
+Hình chóp tứ giác đều:
S ABCD
+Hình chóp cụt tam giác đều : ABC
+Hình hộp chữ nhật là : ABCD, A'B'C'D'
-Gọi HS nhận xét từng câu
-Nhận xét và đánh giá
*HĐ3: Yêu cầu HS làm bài tập 8/17 (SGK)?
(Gọi 2 học sinh lên bảng trình bày KQ lần lượt a, b).
-Gọi hs nhận xét
-Nhận xét.
*HĐ4: yêu cầu HS làm bài tập 9/17 ( SGK)?
( Gọi 2 học sinh lên bảng, trình bày kết quả).
GY: MN + M'N' = 2HK
-Gọi HS nhận xét
-Nhận xét
-4 HS lên bảng trình bày kết quả lần lượt a, b, c, d
-Nhận xét
-3 HS lên bảng trình bày kết quả lần lượt của 3 câu a, b, c
-Nhận xét lần lượt
-2 HS trình bày cách chứng minh lần lượt a, b.
-Nhận xét
- 2 hs trình bày cách CM.
d
M
M'
H
K
N
N'
-Nhận xét
Bài 6/15:
a) a trùng với a' khi a nằm trên mp (P) hoặc a vuông góc mp (P)
b) a // a' khi a // mp (P)
c) a cắt a' khi a cắt mp (P) nhưng không vuông góc với mp (P)
d) a và a' không bao giờ chéo nhau.
Bài 7/17:
a) Đó là : mp (SAC), mp (SBD), mp trung trực của AB (đồng thời của CD) và mp trung trực của AD (đồng thời của BC)
b) Có 3 mp đối xứng : là 3 mp trung trực của 3 cạnh: AB, BC, CA
c) Có 3 mp đối xứng : là 3 mp trung trực của 3 cạnh : AB, AD, AA'
Bài 8/17:
a) Gọi O là tâm của hình lập phương phép đối xứng tâm O biến các đỉnh của hình chóp A . A'B'C'D' thành các đỉnh của hình chóp C'. ABCD. Vậy 2 hình chóp đó bằng nhau.
b) Phép đối xứng qua mp (ADC'B') biến các đỉnh của hình lăng trụ ABC. A'B'C' thành các đỉnh của hình lăng trụ AA'D' , BB'C' nen 2 hình lăng trụ đó bằng nhau.
Bài 19/17:
*Nếu phép tịnh tiến theo v biến 2 điểm M, N lầm lượt thành M', N' thì :
MM' = NN' = v MN = M'N'.
Do đó : MN = M'N'.
Vậy phép tịnh tiến là 1 phép dời hình.
*Giả sử PĐX qua đường thẳng d biến 2 điểm M, N lần lượt thành M', N'
Gọi H và K lần lượt là trung điểm MM' và NN'
Ta có : MN + M'N' – 2HK
MN – M'N' = HN- HM – HN' + HM'
= N'N + MM'
Vì 2 vectơ MM' và NN' đều vuông góc HK nên : (MN + M'N') (MN - M'N') = 2HK (N'N + MM')
= 0
MN2 = M'N'2 hay MN = M'N'
Vậy phép đối xứng qua d là 2 phép dời hình.
3-Củng số và dặn dò (2') :
-Nắm vứng được các KN cơ bản : Phép đối xứng qua mp, phép dời hình, mp đối xứng của hình đa diện, sự bằng nhau của hình đa diện.
-Làm các bài tập còn lại
4-Rút kinh nghiệm
File đính kèm:
- T_6_C1_2.doc