Giáo án lớp 12 môn Toán - Đạo hàm

Dùng định nghĩa tính đạo hàm của các hàm số:

a) y = f(x) = cosx b) y = f(x) = tại x0 = 0.

2) Cho hàm số y = f(x) = x33x2+1, có đồ thị (C).

a) Tìm f(x). Giải bất phương trình f(x) 0.

b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 3.

3) Cho (C) : y = f(x) = x4 - 2x2.

 

doc30 trang | Chia sẻ: manphan | Lượt xem: 894 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án lớp 12 môn Toán - Đạo hàm, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
I. ĐẠO HÀM 1) Dùng định nghĩa tính đạo hàm của các hàm số: a) y = f(x) = cosx b) y = f(x) = tại x0 = 0. 2) Cho hàm số y = f(x) = x3-3x2+1, có đồ thị (C). a) Tìm f’(x). Giải bất phương trình f’(x) £ 0. b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 3. 3) Cho (C) : y = f(x) = x4 - 2x2. a) Tìm f’(x). Giải bất phương trình f’(x) > 0. b) Viết phương trình tiếp tuyến của (C) : 1. Tại điểm có hoành độ bằng . 2. Tại điểm có tung độ bằng 3. 3. Biết tiếp tuyến song song với d1 : y = 24x+2007 4. Biết tiếp tuyến vuông góc với d2 : y =. 4) Viết phương trình tiếp tuyến với (P): y = f(x) = x2 - 2x - 3 đi qua M1(5;3). 5) Viết phương trình tiếp tuyến của (C):y=f(x)=x3 –3x+1 kẻ từ M(3; - 1). 6) Viết phương trình tiếp tuyến của (C) : y = f(x) = x - 2+ đi qua A(0;3). 7) Viết phương trình tiếp tuyến của (C): y = f(x)= đi qua H(1;1). 8) Tìm đạo hàm các hàm số a) y = ( x3 – 3x + 2 ) ( x4 + x2 – 1 ) b) y = c) y = 9) Tìm đạo hàm các hàm số : a) y = ( 5x3 + x2 – 4 )5 b) y = sin2 (cos 3x) c) y = ln3 x d) y = esinx e) y = e4x + 5 f) y = (0< a ¹ 1) 10) Tìm đạo hàm các hàm số : a) y= ln ( x + ) b) y = log3 ( x2 – sin x ) c) y = ex – ln ( sin x) d) y = tg ( 2x+3) e) y = tg2x . sinx f) y = g) y = cotg ( 5x2 + x – 2 ) h) y = cotg2 x + cotg2x 11) Tính đạo hàm của hàm số f(x) = tại điểm x0 = 0 12) Tìm đạo hàm cấp n ( n nguyên dương) của các hàm số sau : a) y = lnx b) y = e Kx c) y = sin x d) y = cos x e) y = ln (x2 + x – 2 ) 13) Chứng minh rằng : a) Với y= 3 + ( x ¹ 0), ta có xy’ + y = 3 b) Với y = x sin x, ta có : xy – 2 ( y’ – sin x ) +xy” = 0 c) Với y = ( x +1 ) ex ta có : y’ – y = ex d) Với y= e sin x ta có : y’ cos x – ysin x – y” = 0 e) Với y = ln ta có xy’ + 1 = ey 14) Chứng minh các đẳng thức đạo hàm: a) Cho hàm số y =. Chứng minh rằng: y’' = -y b) Cho y = ln(sinx) . Chứng minh rằng : y’+y’’sinx+tg = 0 c) Cho y = e4x+2e-x. Chứng minh rằng : y’’’-13y’-12y = 0 d) Cho y = . Chứng minh rằng : 2(y’)2 = (y-1)y’’ e) Cho y = . Chứng minh rằng: y’ = cotg4x 15) Cho f(x) = . Chứng minh rằng : 16) Cho f(x) = . Chứng minh rằng : 17) Giải phương trình : f’(x) = 0 biết rằng: a) f(x) = cos x +sin x + x. b) f(x) = (x2+2x-3)ex c) f(x) = sinx.ex d) f(x) = 18) Giải bất phương trình f/(x) < 0 với f(x) = x3-2x2+ p . 19) Cho các hàm số f(x) = sin4x + cos4x; g(x) = Chứng minh rằng : f ’(x) = g’(x), "xỴR 20) Tìm vi phân của mỗi hàm số sau tại điểm đã chỉ ra: a) f(x) = ln (sinx) tại x0 = . b) f(x) = x. cosx tại x0 = 21) Tìm vi phân của mỗi hàm số: a) f(x) = b) f(x) = x.lnx. c) f(x) = . 22) Biết rằng ln 781 = 6,6606 , hãy tính gần đúng ln 782. II.SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ 23) Tìm các điểm tới hạn của hàm số :y = f(x) = 3x+. 24) Xét tính đơn điệu của hàm số a) y = f(x) = x3 -3x2+1. b) y = f(x) = 2x2 -x4. c) y = f(x) = . d) y = f(x) = . e) y = f(x) = x+2sinx trên ( -p ; p). f) y = f(x) = xlnx. g) y = f(x) = . h) y= f(x) = x3-3x2. i) . j) y= f(x) = x4-2x2. k) y = f(x) = sinx trên đoạn [0; 2p]. 25) Cho hàm số y = f(x) = x3 -3(m+1)x2+3(m+1)x+1. Định m để hàm số : a) Luôn đồng biến trên khoảng xác định của nó. Kq:1 £ m £ 0 b) Nghịch biến trên khoảng ( -1;0). Kq: m £ c) Đồng biến trên khoảng (2;+¥ ). Kq: m £ 26) Định mỴZ để hàm số y = f(x) = đồng biến trên các khoảng xác định của nó. Kq: m = 0 27) Định m để hàm số y = f(x) = nghịch biến trên nửa khoảng [1;+¥). Kq: m £ 28) Chứng minh rằng : , "x > 0. 29) Chứng minh rằng : hàm số luôn luôn tăng trên khoảng xác định (trên từng khoảng xác định) của nó : a) y = x3-3x2+3x+2. b) . c) . 30) Tìm m để hàm số : a) Luôn luôn đồng biến trên khoảng xác định của nó. b) Luôn luôn đồng biến trên khoảng (2;+¥) 31) Tìm m để hàm số : luôn đồng biến trên từng khoảng xác định của nó. 32) Tìm m để hàm số : luôn đồng biến trên khoảng (1;+¥). Kq: 33) Tìm m để hàm số y = x2.(m -x) -m đồng biến trên khoảng (1;2). Kq: m³3 34) Chứng minh rằng : a) ln(x+1) 0. b) cosx >1 -, với x > 0 . II. CỰC ĐẠI VÀ CỰC TIỂU 35) Tìm các điểm cực trị của hàm số bằng đạo hàm cấp 1: a) y = x3. b) y = 3x + + 5. c) y = x.e-x. d) y = . 36) Tìm các điểm cực trị của hàm số bằng đạo hàm cấp 2: a) y = sin2x với xỴ[0; p ] b) y = x2lnx. c) y = . 37) Xác định tham số m để hàm số y=x3-3mx2+(m2-1)x+2 đạt cực đại tại x=2. ( Đề thi TNTHPT 2004-2005) Kết quả : m=11 38) Định m để hàm số y = f(x) = x3-3x2+3mx+3m+4 a.Không có cực trị. Kết quả : m ³1 b.Có cực đại và cực tiểu. Kết quả : m <1 c. Có đồ thị (Cm) nhận A(0; 4) làm một điểm cực trị (đạt cực trị 4 khi x = 0). Hd: M(a;b) là điểm cực trị của (C): y =f(x) khi và chỉ khi: Kết quả : m=0 d.Có cực đại và cực tiểu và đường thẳng d qua cực đại và cực tiểu đi qua O. Kq : d:y = 2(m-1)x+4m+4 và m= -1 39) Định m để hàm số y = f(x) = a. Có cực đại và cực tiểu. Kết quả : m>3 b.Đạt cực trị tại x = 2. Kết quả : m = 4 c.Đạt cực tiểu khi x = -1 Kết quả : m = 7 40) Chứng tỏ rằng với mọi m hàm số y = luôn có cực trị. 41) Cho hàm số y = f(x) =x3-mx2+(m2-m+1)x+1. Có giá trị nào của m để hàm số đạt cực tiểu tại x = 1 không? Hd và kq : Sử dụng đkc,đkđ. Không 42) Cho hàm số y = f(x) =x3-mx2+(m+2)x-1. Xác định m để hàm số: a) Có cực trị. Kết quả: m 2 b) Có hai cực trị trong khoảng (0;+¥). Kết quả: m > 2 c) Có cực trị trong khoảng (0;+¥). Kết quả: m 2 43) Biện luận theo m số cực trị của hàm số y = f(x) = -x4+2mx2-2m+1. Hd và kq : y’=-4x(x2-m) m £ 0: 1 cực đại x = 0 m > 0: 2 cực đại x=và 1 cực tiểu x = 0 44) Định m để đồ thị (C) của hàm số y = f(x) = có hai điểm cực trị nằm khác phía so với Ox. Kết quả : m > 45) Định m để hàm số y = f(x) = x3-6x2+3(m+2)x-m-6 có 2 cực trị và hai giá trị cực trị cùng dấu. Kết quả : < m < 2 46) Chứùng minh rằng với mọi m hàm số y = f(x) =2x3-3(2m+1)x2+6m(m+1)x+1 luôn đạt cực trị tại hai điểm x1 và x2 với x2-x1 là một hằng số. 47) Tìm cực trị của các hàm số : a). b). c) y = 48) Định m để hàm số có cực trị : a) . Kết quả: m<3 b) . Kết quả: m1 49) Định m để hàm số sau đạt cực đại tại x=1: y = f(x) = -mx2+(m+3)x-5m+1. Kết quả: m = 4 50) Cho hàm số : f(x)=x3-mx2+(m-2) x-1. Định m để hàm số đạt cực đại tại x2, cực tiểu tại x1 mà x1 -1 51) Chứng minh rằng : ex ³ x+1 với "xỴ|R. III. GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA HÀM SỐ 52) Tìm giá trị nhỏ nhất của hàm số y=f(x)=x2-2x+3. Kq:f(x) = f(1) = 2 53) Tìm giá trị lớùn nhất và nhỏ nhất của hàm số y = f(x) = x2-2x+3 trên [0;3]. Kq: f(x)=f(1)=2 và f(x)=f(3)=6. 54) Tìm giá trị lớùn nhất của hàm số y = f(x) = với x<1. Kết quả : f(x) = f(0) = -4 55) Muốn xây hồ nước có thể tích V = 36 m3, có dạng hình hộp chữ nhật (không nắp) mà các kích thước của đáy tỉ lệ 1:2. Hỏi: Các kích thước của hồ như thế nào để khi xây ít tốn vật liệu nhất? Kết quả : Các kích thước cần tìm của hồ nước là: a=3 m; b=6 m và c=2 m 56) Tìm giá trị lớn nhất của hàm số y = . Kết quả : y = f(±1) = 57) Định m để hàm số y = f(x) = x3 -3(m+1)x2+3(m+1)x+1 nghịch biến trên khoảng( -1;0). Kết quả : m £ 58) Tìm trên (C): y = điểm M sao cho tổng các khoảng cách từ M đến hai trục tọa độ là nhỏ nhất. Kết quả :M(0;) 59) Tìm giá trị nhỏ nhất và lớn nhất của hàm số y = 3 sinx – 4 cosx. 60) Tìm GTLN: y=-x2+2x+3. Kết quả: y=f(1)= 4 61) Tìm GTNN y = x – 5 + với x > 0. Kết quả: y=f(1)= -3 62) Tìm GTLN, GTNN y = x – 5 + . Kết quả: ; 63) Tìm GTLN, GTNN của hàm số y=2x3+3x2-1 trên đoạn Kết quả: ; 64) Tìm GTLN, GTNN của: a) y = x4-2x2+3. Kết quả: y=f(±1)=2; Không có y b) y = x4+4x2+5. Kết quả: y=f(0)=5; Không có y c). Kết quả: y=; y=1 d). Kết quả: y=; y=3 65) Cho hàm số . Chứng minh rằng : 66) Cho hàm số . Chứng minh rằng : -1£ y £ 1 Hướng dẫn:y’=0 Û 2sin2a . x2-2sin2a =0 Û x=-1 V x=1. Tiệm cận ngang: y=1 Dựa vào bảng biến thiên kết luận -1£ y £ 1. 67) Định x để hàm số sau đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất : y =f(x)= lg2x + Hướng dẫn và kết quả : Txđ: (0; +¥ ) . Đặt t= lg2x, t³0, Þ hàm số y=g(t)=t+xác định trên [0; +¥), dùng đạo hàm đưa đến y’=0 Û t=-3 Ï[0; +¥ ) V t=-1 Ï[0; +¥ ) Þ hàm số y=g(t) đồng biến trên [0;+¥ ) Þ g(t) = g(0) = Þ f(x) = f(1) = 68) Tìm giá trị LN và giá trị NN của hàm số y=2sinx- trên đoạn [0;p] (Đề thi TNTH PT 2003-2004) Kết quả: f(x)=f(p /4)= f(3p /4)=; f(x)=f(0)=f(p )=0 IV. TÍNH LỒI, LÕM VÀ ĐIỂM UỐN CỦA ĐỒ THỊ HÀM SỐ 69) Tìm các khoảng lồi, lõm và điểm uốn của đồ thị các hàm số : a) y = f(x) = x4-6x2+1 b) y = f(x) = 70) Định m để đồ thị (Cm):y = f(x) = x3-3(m-1)x2+m2x-3 nhận I(1;-1) làm điểm uốn. Kết quả: m = 2 . 71) Định m để đồ thị (Cm):y = f(x) = x4-6mx2+ 3 a) Có hai điểm uốn. Kết quả: m > 0 b) Không có điểm uốn. Kết quả: m £ 0 72) Chứng minh rằng đồ thị (C): có 3 điểm uốn thẳng hàng. Viết phương trình đường thẳng đi qua 3 điểm uốn này. Hướng dẫn và kết quả: (C) có 3 điểm uốn A(-2;-1), B(-;0), C(1;1).Þ A, B, C thẳng hàng. Đường thẳng d qua A, B, C qua C(1;1) có hệ số góc nên có phương trình : y = k(x-xC)+yC = (x-1)+1Û y=x +. 73) Tìm điểm uốn và xét tính lồi, lõm của (C):y = f(x) = ½x2-3x+2½ Kết quả: Lõm trên các khoảng (-¥;1) và (2; +¥). Lồi trên khoảng (1;2). Điểm uốn : I1(1;0) và I2(2;0) 74) a) Chứng minh rằng nếu (C): y = f(x) = ax3+bx2+cx+d (a¹0) cắt Ox tại 3 điểm cách đều nhau thì điểm uốn của (C) nằm trên Ox. b) Tìm m để (Cm):y = x3-3mx2+2m(m-4)x+9m2-m cắt trục hoành tại 3 điểm cách đều nhau (có hoành độ lập thành một cấp số cộng). Hướng dẫn và kết quả: a) Cho y = 0Û ax3+bx2+cx+d = 0 có 3 nghiệm x1, x2, x3, lập thành cấp số cộng Þ 2x2= x1+x3 Þ 3x2 = x1+x2+x3 = Þ x2 = . Vậy điểm uốn I(x2;0)ỴOx. b) Tìm I(m;m2-m). Điều kiện cần : IỴOx Þ m2-m = 0 Þ m = 0 V m = 1. Điều kiện đủ : Chọn m = 1. 75) Tìm khoảng lồi, lõm và điểm uốn của (C) : a) y=x3-3x2+2. b) . 76) Chứng minh rằng đồ thị của các hàm số sau có phần lồi, lõm nhưng không có điểm uốn: a). b) y = x + . 77) Tìm tham số để: a) (Cm) : y=x3-3x2+3mx+3m+4 nhận I(1;2) làm điểm uốn. b) (Ca,b) : y=ax3+bx2+x+1 nhận I(1;-2) làm điểm uốn. c) Biện luận theo m số điểm uốn của (Cm) :y=x4+mx2+m-2 . 78) Tìm m để đồ thị (Cm):y = f(x) = x3-3x2-9x+m cắt Ox tại 3 điểm theo thứ tự có hoành độ lập thành cấp số cộng. Kết quả : m = 11. 79) Tìm điều kiện của a và b để đường thẳng (d): y = ax+b cắt đồ thị (C) : y=x3-3x2-9x+1 tại ba điểm phân biệt A, B, C và AB = BC. Hướng dẫn và kết quả : Lập phương trình hoành độ giao điểm : ax+b = x3-3x2-9x+1Û f(x) = x3-3x2-(a+9)x+1-b = 0.(1) Điều kiện cần: Điểm uốn của đồ thị hàm số (1) là I(1;-a-b-10)ỴOx Þ -a-b-10 = 0 Þ a+b = -10. Điều kiện đủ : a+b = -10 Þ f(x) = (x-1).g(x) = 0 với g(x) = x2-2x+b-1. YCBT ÛÛ b<2 Kết luận : 80) Viết phương trình đường thẳng đi qua 3 điểm uốn của đồ thị (C):y=. Kq:y = 81) Tìm m để (Cm):y = x3-3mx2+2m(m-4)x+9m2-m có điểm uốn : a) Nằm trên đường thẳng (d) : y = x. Kết quả : m = 0 V m = 2 . b) Đối xứng với M(-3;-6) qua gốc tọa độ O. Kết quả : m= 3 . c) Đối xứng với N(5;-20) qua Ox. Kết quả : m= 5 . d) Đối xứng với P(-7;42) qua Oy. Kết quả : m= 7 . V. TIỆM CẬN 82)Tìm các đường tiệm cận của đồ thị các hàm số : a) y = . Kết quả: x = 1; x = 2 và y = 2 b) y = . Kết quả: x = -2 và y = x-3 83) Tìm các đường tiệm cận ngang của đồ thị các hàm số : a) y = 1+. Kết quả: y = 1 b) y = . Kết quả: y = ±1 84) Tìm các đường tiệm cận xiên của đồ thị hàm số y = .Kết quả: y = ±x 85) Tìm các tiệm cận của đồ thị các hàm số: y = . Kết quả : y = -x+1. 86) Cho (Cm ) : . a) Biện luận m số tiệm cận của đồ thị (Cm). b) Tìm m để tiệm cận xiên của đồ thị (Cm) đi qua I(1;2). 87)Tìm trên đồ thị (C):y = điểm M có tổng các khoảng cách từ đó đến hai tiệm cận là nhỏ nhất. 88) Lấy một điểm bất kỳ MỴ(C):y = f(x) = . Chứng minh rằng tích các khoảng cách từ M đến 2 tiệm cận của (C) luôn không đổi. Kq: d1.d2=. VI. KHẢO SÁT HÀM SỐ 89) Khảo sát sự biến thiên và vẽ đồ thị các hàm số: a) y = x3-3x+1 b) y = 3x2-x3 c) y = x3+3x-4 d) y = (1-x)3 e) y = f) y = x4+x2-2. g) y=2x2-x4-1 h) y=x4-1 i) y = j) y = k) y = l) y = m) y = n) y = VII.CÁC BÀI TOÁN LIÊN HỆ ĐẾN KHẢO SÁT HÀM SỐ 90) Biện luận theo m số giao điểm của 2 đồ thị: a) (C): y = và d: y = x-m. Hd: Lý luận x= b) (H): và d: y= -2x+m. Hd: x=1 không là nghiệm phương trình hoành độ giao điểm. 91) A.Vẽ đồ thị (C) hàm số y = x3+3x2-2 B.Biện luận bằng đồ thị (C) số nghiệm của pt: x3+3x2-(m-2) = 0 92) Viết phương trình các đường thẳng vuông góc với đường thẳng y=x+3 và tiếp xúc với đồ thị (C) hàm số y= -x3+3x2-4x+2. 93) Viết phương trình tiếp tuyến của đồ thị (C): y=x3+3x2+1 biết tiếp tuyến đi qua gốc toạ độ O. 94) Dùng đồ thị (C): y = x3-3x2+1 biện luận theo m số nghiệm của phương trình x3-3x2 - 9x+1-m = 0. 95) Cho parabol (P): y=x2-2x+2 và đường thẳng d: y=2x+m. a) Khảo sát và vẽ đồ thị (P) b) Biện luận theo m số điểm chung của d và (P). c) Khi d cắt (P) tại hai điểm phân biệt A và B. Tìm tập hợp trung điểm M của đoạn AB. 96) Cho hàm số , có đồ thi (H). a) Khảo sát và vẽ đồ thị (H). b) Cho đường thẳng d: y= -2x+m. Giả sử d cắt (H) tại hai điểm M và N. Tìm tập hợp trung điểm I của MN. 97) Chứng minh rằng đồ thị (C) của hàm số y=f(x)=x3-3x2+1 nhận điểm uốn của nó làm tâm đối xứng. 98) Cho hàm số y = x4-4x3-2x2+12x-1. a) Chứng minh rằng đồ thị (C) của hàm số có trục đối xứng. b) Tìm các giao điểm của (C) với trục Ox. Hướng dẫn và kết quả: a)Dự đoán trục đối xứng của đồ thị (C) : Tìm đến y(3) và cho y(3) = 0 , tìm được nghiệm x=1 cũng là nghiệm của y’=0. Từ đó chứng minh x=1 là trục đối xứng của (C). b) Cho Y= 0, tìm được X= Þ y=0 và x =1. 99) Chứng minh rằng (C): y = có hai trục đối xứng. Hướng dẫn và kết quả: Tâm đối xứng là I(-1;1). Suy luận có hai đường phân giác y=-x và y = x+2 của các góc tạo bởi 2 tiệm cận là trục đối xứng của (C). Chứng minh hai đường thẳng này là hai trục đối xứng của (C). 100) Khảo sát sự biến thiên và vẽ đồ thị (C): y = . Từ đồ thị (C) đã vẽ, hãy suy ra đồ thị của các hàm số: a) (C1): y = f1(x) = b) (C2): y = f2(x) = c) (C3): y = f3(x) = d) (C4): |y| = f4(x) = e) (C5): y = f5(x) = f) (C6): |y| = f6(x) = 101) a) Khảo sát và vẽ đồ thị (C) hàm số : y = f(x) = x3-3x2+2. b) Từ đồ thị (C), suy ra đồ thị (C’): y = g(x) = | x| 3-3x2 +2. Từ đó biện luận theo m số nghiệm của phương trình: | x| 3-3x2 +1 - m = 0. 102) Chứng tỏ rằng (Cm): y=x2+(2m+1)x+m2-1 (1) luôn tiếp xúc với một đường thẳng cố định. Xác định phương trình đường thẳng đó. Lời giải 1: 1. Dự đoán đường thẳng cố định: Cách 1: Chuyển (1) về phương trình m2+2xm+x2+x-1-y=0, phương trình này có D= (x)2-1.(x2+x-1-y)=0 Û -x+1+y=0 Û y= x-1 là đường thẳng cố định. Cách 2: Chuyển (1) về phương trình m2+2xm=-x2-x+1+y (2) Lấy đạo hàm 2 vế theo m: 2m+2x=0 Û m=-x, thay trở lại (2):y=x-1 là đường thẳng cố định. 2. Chứng tỏ (Cm) tiếp xúc với đường thẳng cố định: ( Bắt đầu lời giải) Phương trình hoành độ giao điểm của (Cm) và d:y=x-1 là: x2+(2m+1)x+m2-1=x-1 Û x2+2mx+m2=0 Û (x+m)2=0 Û x=-m (nghiệm kép) Vậy (Cm) luôn tiếp xúc d:y=x-1. Chú ý: Chỉ có đường thẳng và đường bậc 2,mới có khái niệm “ 2 đường tiếp xúc nhau Û phương trình hoành độ giao điểm ( bậc 2 ) có nghiệm kép” . Trong các hàm số khác và hàm bậc nhất ta phải dùng hệ điều kiện tiếp xúc. Lời giải 2: Gọi d: y=ax+b là đường thẳng cố định. d tiếp xúc (Cm) khi và chỉ khi phương trình hoành độ giao điểm có nghiệm kép với mọi m: x2+(2m+1)x+m2-1= ax+bÛ x2+(2m+1-a) x+m2-b-1=0 có nghiệm kép với " m Û D =(2m+1-a) 2-4.1(m2-b-1)=0 với " mÛ-4(a-1)m+(a-1)2+4b+4=0 với " m Û Û . Vậy d:y=x-1 là đường thẳng cố định mà (Cm) luôn tiếp xúc. 103) Chứng tỏ rằng (Cm): y= (1), m ¹ 0 luôn tiếp xúc với hai đường thẳng cố định. Xác định phương trình hai đường thẳng đó. 1. Dự đoán các đường thẳng cố định: Biến đổi (1) về phương trình bậc hai ẩn m: m2+(y-1-3x)m+(y-1)x=0 (2), đặt t=y-1 ta có phương trình: m2+(t-3x)m+tx=0(3) Phương trình (3) có D=0 Û (t-3x)2-4tx=0 Û t2-10xt+9x2=0Û t=9xV t=x. Thay t=y-1,suy ra hai đường thẳng d1:y=9x+1, d2:y=x+1 cố định tiếp xúc (Cm) 2. Chứng tỏ (Cm) tiếp xúc với d1, và tiếp xúc d2: ( Bắt đầu lời giải) d1:y=9x+1 tiếp xúc (Cm) khi và chỉ khi hệ sau có nghiệm: Û (3x+m)2=0 Û x= - Vậy d1:y=9x+1 tiếp xúc (Cm) tại điểm có hoành độ x= - (m ¹ 0). Tương tự : d2:y=x+1 tiếp xúc (Cm) tại điểm có hoành độ x= m (m ¹ 0). 104) Chứng tỏ rằng (Cm): y=mx3-3(m+1)x2+x+1 luôn tiếp xúc với một đường thẳng cố định tại một điểm cố định. Hướng dẫn giải: Tìm được (Cm) đi qua hai điểm cố định A(0;1) và B(3;-23) và tiếp tuyến của (Cm) tại A có phương trình y=x+1 là tiếp tuyến cố định. 105) Chứng tỏ rằng (dm): y=(m+1)x+m2-m luôn tiếp xúc với một parabol cố định. Hướng dẫn giải: Dùng phương pháp 1, dự đoán (P):y= là parabol cố định và chứng tỏ (dm) tiếp xúc (P) tại x=1-2m. VIII.TÍCH PHÂN 106) Cho f(x)=, tìm A, B và C sao cho: f(x)= . Kq: A= -1; B=3 và C=1 2) Từ đó tính 107) Tính 108) Tính 109) Tính 110) Tìm A, B , C để sinx-cosx+1= A(sinx+2cosx+3)+B(cosx-2sinx) +C Kq: A=; B= và C= 111) Tìm họ nguyên hàm của các hàm số sau: Hàm số Kết quả Hàm số Kết quả a) y= b) y=2 +C x-sinx+C c) y= d) y= tgx-cotgx+C sinx+cosx+C 112) Tìm nguyên hàm F(x) của f(x)= x3-x2+2x-1 biết rằng F(0) = 4. Kết quả: F(x) =+x2-x+4 113) Tính đạo hàm của F(x) = x. l nx-x , rồi suy ra nguyên hàm của f(x)= l nx. Kết quả: F(x) = x. l nx-x+C 114) Tìm A và B sao cho với mọi x¹ 1 và x¹2 , ta có: Từ đó, hãy tìm họ nguyên hàm của hàm số: Kết quả: A=3; B= -2. F(x) = 3 l n½x-2½-2 l n½x-1½+ C= l n +C 115) Tính các tích phân: Tích phân Kết quả Tích phân Kết quả a) b) c) l n½sinx½+C -cotgx-x+C sin3x+C d) e).sinxdx f) l n½ l n x½+C +C l n½½+C 116) Tính các tích phân: Tích phân Kết quả Tích phân Kết quả a) b) c) d) 1 12 4 e) f) g) 117) Tính các tích phân: Tích phân Kết quả Tích phân Kết quả a) b) c) d) e) f) ln2 2ln3 ln ln g) h) i) j) k) ln2 ln(+1) 0 Giáo trình Giải tích 12 - Trang 16 - Soạn cho lớp LTĐH 118) Chứng minh rằng: a) b) 119) Tính các tích phân: Tích phân Kết quả a) b) c) d) e) f) g) h) k) l) 120) Tính các tích phân: Tích phân Kết quả m) n) o) p) q)dx r) s) t) u) v) w) Nhân tử số và mẫu số cho x.Kq: x=sint. Kq: TS+ex-ex.Kq:l n 1 1 121) Tính các tích phân: Tích phân Kết quả Tích phân Kết quả a) b) c) d) 1 Tích phân Kết quả Tích phân Kết quả e) f) g) e-2 ln2-2+ h) i) j) ln2- 122) Chứng minh rằng: a) Hd: x=-t b) Hd: x=b-t c) (a>0) Hd: t=x2 d) Hd: x=-t e) . Áp dụng, tính: Hướng dẫn: Lần 1, đặt x=p -t. Lần 2, để tính ta đặt x=+s và kết quả bài 118a). Tính = p , đặt t=cosx, kq: 123) Chứng minh rằng: Nếu f(x) là một hàm số chẵn,liên tục trên đoạn [-a;a] (a>0) thì: . Hd: t=-x 124) Chứng minh rằng: Nếu f(x) là một hàm số lẻ, liên tục trên đoạn [-a;a] (a>0) thì: . Hd: t=-x 125) Chứng minh rằng: . Áp dụng bài 124). 126) Chứng minh rằng: . Áp dụng bài 123). 127) Chứng minh rằng: Nếu f(x) là một hàm số lẻ thì: . Hd: t=-x 128) Chứng minh rằng . Áp dụng bài 124) 129) Chứng minh rằng . Áp dụng bài 123). 130) Chứng minh rằng . Hd:x=1-t 131) Tính các tích phân sau: Tích phân Kết quả a) b) c) d) e) f) g) Hs lẻ: 0 Tích phân Kết quả h) k) l) m) n) o) p) q) r) s) 1 u=x2, dv=?. 132) Cho In =(nỴ N) a) Tìm hệ thức liên hệ giữa In và In-1 (n≥1) b) Áp dụng tính I3 = . Kết quả: 6-2e 133) Cho In =(nỴ N ) a) Chứng minh rằng In > In+1. Hd: In>In+1,"xỴ(0;) b) Tìm hệ thức liên hệ giữa In+2 và In. Hướng dẫn: In+2 = Þ In + In+2=. 134) Tính In =(nỴ N ) Hướng dẫn: đặt , tìm được In= In-1== I1=. 135) Tính In =(nỴ N ) Hướng dẫn: đặt , tìm được In= In-2. Truy hồi, xét n=2k và xét n=2k+1, kết luận : n=2k ( n chẵn): In= n=2k+1 ( n lẻ): In= 136) Cho In =(nỴ N ) a) Chứng minh rằng In+2 = In. b) Chứng minh rằng f(n) = (n+1).In.In+1 là hàm hằng. c) Tính In. Hướng dẫn: a) Đặt b) Chứng minh f(n+1)=f(n)Þ f(n)==f(0)= c) Truy hồi, xét n=2k và xét n=2k+1, kết luận : n=2k ( n chẵn): I2k= n=2k+1 ( n lẻ): I2k+1= 137)a) Tính I0 =, Kết quả: a= 0 b) Chứng minh rằng In ==0 Hd: b) Truy hồi. 138) Tìm liên hệ giữa In = và Jn = và tính I3. Kết quả: 139) Giải phương trình: = 0. Kq: 0 140) Tính diện tích hình phẳng giới hạn bởi (C): y= -x2+3x-2, d1:y = x-1 và d2:y=-x+2 Kq: 141) Tính diện tích hình phẳng giới hạn bởi (C): y= x3-3x và đường thẳng y=2. Kq: 142) Tính diện tích hình phẳng giới hạn bởi Kq: 143) Tính diện tích hình phẳng giới hạn bởi (C): y=x(3-x)2, Ox và x=2; x= 4. Kq: 2 144) Cho hai đường cong :. a) (P1) và (P2) cắt nhau tại O, M tính tọa độ điểm M. b) Tính diện tích hình phẳng giới hạn bởi (P1) và (P2). Kq: 145) Tính diện tích hình phẳng giới hạn bởi (P) : y2-2y+x = 0 và (d) : x+y = 0. Hướng dẫn: Ta có (P) : x = -y2+2y và (d) : x = -y.Tung độ giao điểm của (P) và (d) là nghiệm phương trình y2-3y = 0 Û y=0 V y=3. Vậy diện tích hình phẳng cần tìm là: 146) Tính diện tích của hình phẳng giới hạn bởi các đường sau đây: a) (C): y = cosx ; y = 0 ; . Kq: 1 b) (C): y = x2 – 2x + 3 ; (d): y = 5 – x . Kq: c) (C): y = 2x3 – x2 – 8x + 1 ; (d): y = 6. Kq: d) (P): y = - x2 + 6x – 8 và tiếp tuyến tại đỉnh của (P) và trục tung. Kq: 9 e) (C): y = x3 – 3x và tiếp tuyến với (C) tại điểm có hoành độ x = Kq: f) (C): y=x2-2x+2 và các tiếp tuyến với (C) kẻ từ . Kq: g). Kq: h) y = x ; y = 0 ; y = 4 – x. Kq: 4 i) y2 = 2x + 1; y = x – 1 . Kq: j) y = lnx ; y = 0 ; x = 2. Kq: 2ln2-1 147) Tính thể tích của vật thể do các hình phẳng giới hạn bởi các đường sau đây quay quanh trục Ox: 148) Cho (E) : 9x2 + 25y2 = 225 ;(d):y = . Tính diện tích hình phẳng giới hạn bởi (d) và phần trên d của (E). Kq: 5p- 149) Tính diện tích hình phẳng giới hạn bởi (P): y=2-x2 , (C): y= và Ox. Kq: 150) Tính V của vật thể do (H) giới hạn bởi: y2 = x3(y≥0) , y = 0, x= 1 a) Quay quanh trục Ox. Kq: b) Quay quanh trục Oy. Kq: 151) Tính diện tích hình phẳng giới hạn bởi (C): y=., tiệm cận ngang của (C) và các đường thẳng x = –1; x = 0. Kq: 2ln2 IX.ĐẠI SỐ TỔ HỢP 152) Cho 7 chữ số :1, 2, 3, 4, 5, 6, 7. a) Từ 7 chữ số trên, có thể thành lập được bao nhiêu số tự nhiên, mỗi số gồm 5 chữ số khác nhau? Kết quả: b) Trong các số nói ở a), có bao nhiêu số chẵn? Kết quả:6.5.4.3.3=1080 c) Trong các số nói ở a), có bao nhiêu số trong đó nhất thiết phải có mặt chữ số 7? Kết quả: 5. 153) Cho 6 chữ số: 1, 2, 3, 4, 5, 6. a) Từ các chữ số trên, có thể thành lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau? Kết quả: b) Trong các số nói trên có bao nhiêu số lẻ? Kết quả: c) Trong các số nói trên có bao nhiêu số trong đó có mặt 2 chữ số 1 và 2? Hướng dẫn và kết quả: Liệt kê 4 tập con có chứa 1 và 2, có thể tạo 4.5!= 480 số. 154) Cho 5 chữ số 0,1, 3, 6, 9. a) Từ 5 chữ số ấy, có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau? Kết quả: b) Trong các số nói trên có bao nhiêu số chẵn? Kết quả: c) Trong các số nói trên có bao

File đính kèm:

  • docDay Them Giai Tich 12 ca nam.doc