Câu I. (3,0 điểm) Cho hàm số y = x4 – 2x2 + 1 có đồ thị (C).
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Dùng đồ thị (C), biện luận theo m số nghiệm của pt : x4 – 2x2 + 1– m = 0.
3. Viết phương trình tiếp tuyến với (C) biết tiếp tuyến đi qua điểm A(0 ; 1)
Câu II. (3,0 điểm)
1 trang |
Chia sẻ: manphan | Lượt xem: 907 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Toán - Đề kiểm tra số 32, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
I. PHẦN BẮT BUỘC CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu I. (3,0 điểm) Cho hàm số y = x4 – 2x2 + 1 có đồ thị (C).
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Dùng đồ thị (C), biện luận theo m số nghiệm của pt : x4 – 2x2 + 1– m = 0.
3. Viết phương trình tiếp tuyến với (C) biết tiếp tuyến đi qua điểm A(0 ; 1)
Câu II. (3,0 điểm)
1. Giải phương trình : 16x – 17.4x + 16 = 0.
2. Tính các tích phân sau: a) ; b)
3. Định m để hàm số : f(x) = x3 - mx2 – 2x + 1 đồng biến trên R
Câu III. (1,0 điểm)
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc .
1. Tính thể tích hình chóp.
2. Tính thể tích mặt cầu ngoại tiếp hình chóp S.ABCD
II. PHẦN TỰ CHỌN (3,0 điểm) (Thí sinh được chọn làm phần 1 hoặc phần 2)
1.Theo chương trình Chuẩn:
Câu IVa. (2,0 điểm) Trong không gian Oxyz , cho bốn điểm A(1 ;1 ;0);
B(0 ; 2; 1) ; C(1 ; 0 ; 2) ; D(1 ; 1 ; 1)
1. Chứng minh bốn điểm đó không đồng phẳng . Tính thể tích tứ diện ABCD.
2. Tìm tọa độ trọng tâm G của D ABC và trọng tâm K của tứ diện ABCD
Chứng minh ba điểm D,K,G thẳng hàng
3. Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD
Câu Va. (1,0 điểm)
Cho số phức z thỏa mãn: . Xác định phần thực và phần ảo của z.
2.Theo chương trình Nâng cao
Câu IVb. (2,0 điểm) Trong không gian với hệ tọa độ Oxyz ,
cho điểm M(2;1;4) và đường thẳng (d) :
1. Viết phương trình mặt phẳng (P) qua M và chứa đường thẳng (d).
2. Tìm điểm M’ đối xứng với điểm M qua đường thẳng (d).
3. Viết phương trình mặt cầu (S) tâm M và tiếp xúc với trục Oz.Tìm giao điểm của đường thẳng (d) và mặt cầu (S).
Câu Vb. (1,0 điểm)
Tìm m để đồ thị (C) : y = x4 + mx2 – (m + 1) và đường thẳng (d) : y = 2(x –1) tiếp xúc nhau tại điểm có x = 1
------------------&--------------------
File đính kèm:
- tntoan2013d249.doc