Giáo án lớp 12 môn Toán - Đề kiểm tra số 52

Câu I ( 3,0 điểm )

Cho hàm số y = x3 + 3x2 + mx + m – 2 . m là tham số

1.Tìm m để hàm số có cực đại và cực tiểu

2.Khảo sát và vẽ đồ thị hàm số khi m = 3.

Câu II ( 3,0 điểm )

1.Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = ex ,y = 2 và đường thẳng x = 1.

 

doc2 trang | Chia sẻ: manphan | Lượt xem: 799 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Toán - Đề kiểm tra số 52, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) Cho hàm số y = x3 + 3x2 + mx + m – 2 . m là tham số 1.Tìm m để hàm số có cực đại và cực tiểu 2.Khảo sát và vẽ đồ thị hàm số khi m = 3. Câu II ( 3,0 điểm ) 1.Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = ex ,y = 2 và đường thẳng x = 1. 2.Tính tích phân 3.Giải bất phương trình log(x2 – x -2 ) < 2log(3-x) Câu III ( 1,0 điểm ) Cho hình nón có bán kính đáy là R,đỉnh S .Góc tạo bởi đường cao và đường sinh là 600. 1.Hãy tính diện tích thiết diện cắt hình nón theo hai đường sinh vuông góc nhau. 2.Tính diện tích xung quanh của mặt nón và thể tích của khối nón. II . PHẦN RIÊNG ( 3 điểm ) 1.Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz cho ba điểm :A(1;0;-1); B(1;2;1); C(0;2;0). Gọi G là trọng tâm của tam giác ABC 1.Viết phương trình đường thẳng OG 2.Viết phương trình mặt cầu ( S) đi qua bốn điểm O,A,B,C. 3.Viết phương trình các mặt phẳng vuông góc với đường thẳng OG và tiếp xúc với mặt cầu ( S). Câu V.a ( 1,0 điểm ) Tìm hai số phức biết tổng của chúng bằng 2 và tích của chúng bằng 3 2.Theo chương trình nâng cao Câu IVb/. Trong không gian với hệ trục tọa độ Oxyz cho bốn điểm A, B, C, D với A(1;2;2), B(-1;2;-1), . 1.Chứng minh rằng ABCD là hình tứ diện và có các cặp cạnh đối bằng nhau. 2.Tính khoảng cách giữa hai đường thẳng AB và CD. 3.Viết phương trình mặt cầu (S) ngoại tiếp hình tứ diện ABCD. Câu Vb/. Cho hàm số: (C) 1.Khảo sát hàm số 2.Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng

File đính kèm:

  • doctntoand31.doc