Câu I (3, 0 điểm)
Cho hàm số y = x3 - 3x2 + 2 (l)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
2. Tính diện tích hình phẳng giới hạn bởi (C) và đường thẳng d: y = 2
Câu II (3 điểm)
1. Giải phương trình: .
2 trang |
Chia sẻ: manphan | Lượt xem: 799 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Toán - Đề số 29, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (3, 0 điểm)
Cho hàm số y = x3 - 3x2 + 2 (l)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
2. Tính diện tích hình phẳng giới hạn bởi (C) và đường thẳng d: y = 2
Câu II (3 điểm)
1. Giải phương trình:.
2. Tính tích phân: I =
3. Tìm giá trị lớn nhất, nhỏ nhất của hàm số : y = .
Câu III. (l điểm)
Cho hình chóp tam giác đều S.ABC cạnh bên bằng a, góc giữa cạnh bên và mặt đáy là . Tính thể tích khối chóp theo a và .
II PHẦN RIÊNG (3,0 điểm).
Thí sinh học theo chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó (phần 1 hoặc 2)
1. Theo chương trình nâng cao :
Câu IV.a (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz cho điểm A (8; 7; - 4), mặt phẳng
(P): x+2y + 3z -3 = 0, đường thẳng là giao tuyến của 2 mặt phẳng: (P): x - 2z - 1 = 0 và (Q): y - z - 1 = 0.
1. Chứng minh đường thẳng cắt mặt phẳng (P). Tính khoảng cách từ điểm M đến mặt phẳng (P)
2. Viết phương trình mặt cầu tâm A và nhận đường thẳng làm tiếp tuyến.
Câu V.a (1,0 điểm): Giải phương trình: x2 + 2x + 2 = 0 trên tập hợp số phức.
2. Theo chương trình chuẩn:
Câu IV.b (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : và mặt phẳng (P): 2x – y + z – 3 = 0.
1. Xét vị trí tương đối của đường thẳng và mặt phẳng (P).
2. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (P). ( O là gốc tọa độ).
Câu V.b (1,0 điểm) .
Giải phương trình bậc 2 sau trong tập hợp các số phức : x2 - 2x + 5 = 0
File đính kèm:
- tntoan12d214.doc