Giáo án lớp 12a môn Hình học - Chuyên đề: Phương pháp luyện tập thể tích khối đa diện

• Mục tiêu :

 Giúp học sinh nắm được kiến thức cơ bản nhất của chương, phân biệt khối đa diện, thể tích khối đa diện, các đa diện đều.

 Tất cả học sinh rèn được kỹ năng tính toán các đại lượng hình học, tính được thể tích khối đa diện tương đối đơn giản.

 Trên cơ sở đó học sinh nắm được kiến thức cơ bản và rèn kỷ năng giải các bài tập khó hơn về khối đa diện.

 

doc41 trang | Chia sẻ: manphan | Lượt xem: 889 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án lớp 12a môn Hình học - Chuyên đề: Phương pháp luyện tập thể tích khối đa diện, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHUYÊN ĐỀ: PHƯƠNG PHÁP LUYỆN TẬP THỂ TÍCH KHỐI ĐA DIỆN Mục tiêu : Giúp học sinh nắm được kiến thức cơ bản nhất của chương, phân biệt khối đa diện, thể tích khối đa diện, các đa diện đều. Tất cả học sinh rèn được kỹ năng tính toán các đại lượng hình học, tính được thể tích khối đa diện tương đối đơn giản. Trên cơ sở đó học sinh nắm được kiến thức cơ bản và rèn kỷ năng giải các bài tập khó hơn về khối đa diện. Thời gian thực hiện: Các tiết bài tập theo phân phối chương trình và tự chọn ( hay các tiết bồi dưỡng, phụ đạo ,...) Đối tượng: học sinh khối 12 trường có đầu vào chất lượng trung bình - yếu, học theo chương trình chuẩn hay nâng cao. Các chướng ngại văn hóa và nhận thức của học sinh: + Phần lớn học sinh không nhớ các hệ thức trong tam giác và tứ giác,..... + Các kiến thức cơ bản về hình học không gian lớp 11 còn rất hạn chế . + Kỹ năng tư duy phân tích giả thiết và các quan hệ giữa các đối tượng trong hình không gian và hình học phẳng còn quá chậm. + Kỹ năng vẽ hình trong không gian chưa thành thạo. Phương pháp luyện tập tổng quát môn hình học không gian cổ điển: Mục đích yêu cầu: + Ôn tập cho học sinh một số kiến thức cần thiết: hệ thức trong tam giác thường, tam giác vuông, các kiến thức cơ bản của tam giác đều, cân,... hình vuông, chữ nhật .... + Ôn tập cho học sinh một số kiến thức trọng tâm về quan hệ song song, vuông góc giữa đường thẳng và mặt phẳng, góc giữa đường thẳng, mặt phẳng .....đã học ở lớp 11. + Hệ thống bài tập được phân loại theo khối đa diên và các dạng thông dụng trong các kỳ thi : bài tập được soạn ra từ dễ đến khó, khai thác triệt để và tinh giản các bài tập trong sách giáo khoa kết hợp soạn thêm bài tập bằng cách sắp xếp lại theo dạng từ đơn giản đến phức tạp trên cơ sở yêu cầu của chuẩn kiến thức. + Bài tập chương này trong sách giáo khoa rất khó, khi chọn bài tập trong sách giáo khoa có bài ta cần thay đổi một số giả thiết :về độ dài của một cạnh,về góc giữa đường thẳng với đường thẳng ,với mặt phẳng và góc giữa mặt phẳng với mặt phẳng ...để học sinh dễ tính toán, dễ tiếp thu; các bài tập khó phải bổ sung thêm những câu hỏi hướng dẩn để giảm bớt độ tư duy phức tạp của bài toán hoặc soạn lại đơn giản hơn theo yêu cầu bài tập đó. + Trước khi dạy mỗi dạng bài tập, giao bài tập về nhà cho học sinh chuẩn bị trước từ đơn giản đến phức tạp có mục đích cũng cố trọng tâm của bài học. Nội dung thực hiện: Ôn tập kiến thức cơ bản: ÔN TẬP 1. KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9 - 10 1. Hệ thức lượng trong tam giác vuông : cho vuông ở A ta có : Định lý Pitago : AB. AC = BC. AH BC = 2AM BC = 2AM b = a. sinB = a.cosC, c = a. sinC = a.cosB, a = , b = c. tanB = c.cot C 2.Hệ thức lượng trong tam giác thường: * Định lý hàm số Côsin: a2 = b2 + c2 - 2bc.cosA * Định lý hàm số Sin: 3. Các công thức tính diện tích. a/ Công thức tính diện tích tam giác: a.ha = với Đặc biệt :*vuông ở A : ,* đều cạnh a: b/ Diện tích hình vuông : S = cạnh x cạnh c/ Diện tích hình chữ nhật : S = dài x rộng d/ Diên tích hình thoi : S = (chéo dài x chéo ngắn) d/ Diện tích hình thang : (đáy lớn + đáy nhỏ) x chiều cao e/ Diện tích hình bình hành : S = đáy x chiều cao f/ Diện tích hình tròn : ÔN TẬP 2 KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 A.QUAN HỆ SONG SONG §1.ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG I. Định nghĩa: Đường thẳng và mặt phẳng gọi là song song với nhau nếu chúng không có điểm nào chung. II.Các định lý: ĐL1:Nếu đường thẳng d không nằm trên mp(P) và song song với đường thẳng a nằm trên mp(P) thì đường thẳng d song song với mp(P) ĐL2: Nếu đường thẳng a song song với mp(P) thì mọi mp(Q) chứa a mà cắt mp(P) thì cắt theo giao tuyến song song với a. ĐL3: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó. §2.HAI MẶT PHẲNG SONG SONG I. Định nghĩa: Hai mặt phẳng được gọi là song song với nhau nếu chúng không có điểm nào chung. II.Các định lý: ĐL1: Nếu mp(P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau. ĐL2: Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia. ĐL3: Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song. B.QUAN HỆ VUÔNG GÓC §1.ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG I.Định nghĩa: Một đường thẳng được gọi là vuông góc với một mặt phẳng nếu nó vuông góc với mọi đường thẳng nằm trên mặt phẳng đó. II. Các định lý: ĐL1: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp(P) thì đường thẳng d vuông góc với mp(P). ĐL2: (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp(P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P). §2.HAI MẶT PHẲNG VUÔNG GÓC I.Định nghĩa: Hai mặt phẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng 900. II. Các định lý: ĐL1:Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau. ĐL2:Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q). ĐL3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P) ĐL4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba. §3.KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng , đến 1 mặt phẳng: Khoảng cách từ điểm M đến đường thẳng a (hoặc đến mặt phẳng (P)) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên đường thẳng a ( hoặc trên mp(P)) d(O; a) = OH; d(O; (P)) = OH 2. Khoảng cách giữa đường thẳng và mặt phẳng song song: Khoảng cách giữa đường thẳng a và mp(P) song song với a là khoảng cách từ một điểm nào đó của a đến mp(P). d(a;(P)) = OH 3. Khoảng cách giữa hai mặt phẳng song song: là khoảng cách từ một điểm bất kỳ trên mặt phẳng này đến mặt phẳng kia. d((P);(Q)) = OH 4.Khoảng cách giữa hai đường thẳng chéo nhau: là độ dài đoạn vuông góc chung của hai đường thẳng đó. d(a;b) = AB §4.GÓC 1. Góc giữa hai đường thẳng a và b là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt cùng phương với a và b. 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên mp(P). Đặc biệt: Nếu a vuông góc với mặt phẳng (P) thì ta nói rằng góc giữa đường thẳng a và mp(P) là 900. 3. Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó. Hoặc là góc giữa 2 đường thẳng nằm trong 2 mặt phẳng cùng vuông góc với giao tuyến tại 1 điểm 4. Diện tích hình chiếu: Gọi S là diện tích của đa giác (H) trong mp(P) và S’ là diện tích hình chiếu (H’) của (H) trên mp(P’) thì trong đó là góc giữa hai mặt phẳng (P),(P’). ÔN TẬP 3 KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 THỂ TÍCH KHỐI ĐA DIỆN I/ Các công thức thể tích của khối đa diện: 1. THỂ TÍCH KHỐI LĂNG TRỤ: V= B.h với Thể tích khối hộp chữ nhật: V = a.b.c với a,b,c là ba kích thước Thể tích khối lập phương: V = a3 với a là độ dài cạnh 2. THỂ TÍCH KHỐI CHÓP: V=Bh với 3. TỈ SỐ THỂ TÍCH TỨ DIỆN: Cho khối tứ diện SABC và A’, B’, C’ là các điểm tùy ý lần lượt thuộc SA, SB, SC ta có: 4. THỂ TÍCH KHỐI CHÓP CỤT: với Chú ý: 1/ Đường chéo của hình vuông cạnh a là d = a, Đường chéo của hình lập phương cạnh a là d = a, Đường chéo của hình hộp chữ nhật có 3 kích thước a, b, c là d = , 2/ Đường cao của tam giác đều cạnh a là h = 3/ Hình chóp đều là hình chóp có đáy là đa giác đều và các cạnh bên đều bằng nhau ( hoặc có đáy là đa giác đều, hình chiếu của đỉnh trùng với tâm của đáy). 4/ Lăng trụ đều là lăng trụ đứng có đáy là đa giác đều. II/ Bài tập: Nội dung chính LOẠI 1: THỂ TÍCH LĂNG TRỤ Dạng 1: Khối lăng trụ đứng có chiều cao hay cạnh đáy Ví dụ 1: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác ABC vuông cân tại A có cạnh BC = a và biết A'B = 3a. Tính thể tích khối lăng trụ. Lời giải: Ta có vuông cân tại A nên AB = AC = a ABC A'B'C' là lăng trụ đứng Vậy V = B.h = SABC .AA' = Ví dụ 2: Cho lăng trụ tứ giác đều ABCD.A’B’C’D' có cạnh bên bằng 4a và đường chéo 5a. Tính thể tích khối lăng trụ này. +Tìm BD thì dùng tam giác nào? tại sao ? Suy ra cạnh hình vuông ABCD ? Lời giải: ABCD A'B'C'D' là lăng trụ đứng nên BD2 = BD'2 - DD'2 = 9a2 ABCD là hình vuông Suy ra B = SABCD = Vậy V = B.h = SABCD.AA' = 9a3 Ví dụ 3: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh a = 4 và biết diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ. + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diên tích B = SABC bằng công thức nào ? + Từ diện tích suy ra cạnh nào ? tại sao ? + Tìm h = AA' dùng tam giác nào và định lí gì ? Lời giải: Gọi I là trung điểm BC .Ta có ABC đều nên . Vậy : VABC.A’B’C’ = SABC .AA'= Ví dụ 4: Một tấm bìa hình vuông có cạnh 44 cm, người ta cắt bỏ đi ở mỗi góc tấm bìa một hình vuông cạnh 12 cm rồi gấp lại thành một cái hộp chữ nhật không có nắp. Tính thể tích cái hộp này. + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm h = AA' ? Tại sao ? + Tìm AB ? Suy ra B = SABCD = AB2 ? Giải Theo đề bài, ta có AA' = BB' = CC' = DD' = 12 cm nên ABCD là hình vuông có AB = 44 cm - 24 cm = 20 cm và chiều cao hộp h = 12 cm Vậy thể tích hộp là V = SABCD.h = 4800cm3 Ví dụ 5: Cho hình hộp đứng có đáy là hình thoi cạnh a và có góc nhọn bằng 600 Đường chéo lớn của đáy bằng đường chéo nhỏ của lăng trụ. Tính thể tích hình hộp . + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diện tích B của hình thoi ABCD bằng cách nào ? + Tìm h = DD' trong tam giác vuông nào ? và định lí gì ? Lời giải: Ta có tam giác ABD đều nên : BD = a và SABCD = 2SABD = Theo đề bài BD' = AC = Vậy V = SABCD.DD' = Bài tập tương tự: Bài 1: Cho lăng trụ đứng có đáy là tam giác đều biết rằng tất cả các cạnh của lăng trụ bằng a. Tính thể tích và tổng diện tích các mặt bên của lăng trụ. ĐS: ; S = 3a2 Bài 2: Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là tứ giác đều cạnh a biết rằng . Tính thể tích của lăng trụ. Đs: V = 2a3 Bài 3: Cho lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là 6cm và 8cm biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ.Tính thể tích và tổng diện tích các mặt của lăng trụ. Đs: V = 240cm3 và S = 248cm2 Bài 4: Cho lăng trụ đứng tam giác có độ dài các cạnh đáy là 37cm ; 13cm ;30cm và biết tổng diện tích các mặt bên là 480 cm2 . Tính thể tích lăng trụ . Đs: V = 1080 cm3 Bài 5: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại A ,biết rằng chiều cao lăng trụ là 3a và mặt bên AA'B'B có đường chéo là 5a . Tính thể tích lăng trụ. Đs: V = 24a3 Bài 6: Cho lăng trụ đứng tứ giác đều có tất cả các cạnh bằng nhau và biết tổng diện tích các mặt của lăng trụ bằng 96 cm2 .Tính thể tích lăng trụ. Đs: V = 64 cm3 Bài 7: Cho lăng trụ đứng tam giác có các cạnh đáy là 19,20,37 và chiều cao của khối lăng trụ bằng trung bình cộng các cạnh đáy. Tính thể tích của lăng trụ. Đs: V = 2888 Bài 8: Cho khối lập phương có tổng diện tích các mặt bằng 24 m2 . Tính thể tích khối lập phương Đs: V = 8 m3 Bài 9: Cho hình hộp chữ nhật có 3 kích thước tỉ lệ thuận với 3,4,5 biết rằng độ dài một đường chéo của hình hộp là 1 m.Tính thể tích khối hộp chữ nhật. Đs: V = 0,4 m3 Bài 10: Cho hình hộp chữ nhật biết rằng các đường chéo của các mặt lần lượt là . Tính thể tích khối hộp này . Đs: V = 6 2)Dạng 2: Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Ví dụ 1: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại B với BA = BC = a ,biết A'B hợp với đáy ABC một góc 600 . Tính thể tích lăng trụ. + Tìm hình chiếu của A'B trên đáy ABC. Suy ra góc [A'B,(ABC)] = ? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diện tích B của tam giác ABC bằng công thức nào ? + Tìm h = AA' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ? Lời giải: Ta có là hình chiếu của A'B trên đáy ABC . Vậy SABC = Vậy V = SABC.AA' = Ví dụ 2: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông tại A với AC = a , = 60 o biết BC' hợp với (AA'C'C) một góc 300. Tính AC' và thể tích lăng trụ. + Tìm hình chiếu của BC' trên (AA'C'C). Suy ra góc [BC',(AA'C'C)] = ? + Tìm AC' trong tam giác nào?Dùng hệ thức lượng giác gì ? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diện tích B của tam giác ABC bằng công thức nào ? + Tìm h = AA' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ? Lời giải: . Ta có: nên AC' là hình chiếu của BC' trên (AA'C'C). Vậy góc[BC';(AA"C"C)] = = 30o V =B.h = SABC.AA' là nửa tam giác đều nên Vậy V = Ví dụ 3: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông cạnh a và đường chéo BD' của lăng trụ hợp với đáy ABCD một góc 300. Tính thể tích và tổng diên tích của các mặt bên của lăng trụ . + Dựng hình vuông ABCD hay A'B'C'D' và các cạnh bên của hình lăng trụ . + Dựng BD' và BD ? phân tích yêu cầu của đề bài ra các yêu cầu nhỏ: + Tìm hình chiếu của BD' trên đáy ABCD. Suy ra góc [BD',(ABCD)] = ? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diện tích B của hình vuông ABCD bằng công thức nào ? + Tìm h = DD' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ? Giải: Ta có ABCD A'B'C'D' là lăng trụ đứng nên ta có: và BD là hình chiếu của BD' trên ABCD . Vậy góc [BD';(ABCD)] = Vậy V = SABCD.DD' = S = 4SADD'A' = Ví dụ 4: Cho hình hộp đứng ABCD A'B'C'D' có đáy ABCD là hình thoi cạnh a và = 60o biết AB' hợp với đáy (ABCD) một góc 30o . Tính thể tích của hình hộp. phân tích yêu cầu của đề bài ra các yêu cầu nhỏ: + Tìm hình chiếu của AB' trên (ABCD). Suy ra góc [AB',(ABCD)] = ? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Dựng BD. Suy ra tam giác ABD có hình tính gì ? Suy ra diện tích B của ABCD bằng cách nào? +Tính h = BB' trong tam giác nào ? Dùng hệ thức lượng giác nào ? Giải đều cạnh a vuông tạiB Vậy Bài tập tương tự: Bài 1: Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông cân tại B biết A'C = a và A'C hợp với mặt bên (AA'B'B) một góc 30o . Tính thể tích lăng trụ ĐS: Bài 2: Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông tại B biết BB' = AB = a và B'C hợp với đáy (ABC) một góc 30o . Tính thể tích lăng trụ. ĐS: Bài 3: Cho lăng trụ đứng ABC A'B'C' có đáy ABC là tam giác đều cạnh a biết AB' hợp với mặt bên (BCC'B') một góc 30o . Tính độ dài AB' và thể tích lăng trụ . ĐS: ; Bài 4: Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông tại A biết AC = a và biết BC' hợp với mặt bên (AA'C'C) một góc 30o . Tính thể tích lăng trụ và diện tích tam giác ABC'. ĐS: , S = Bài 5: Cho lăng trụ tam giác đều ABC A'B'C' có khoảng cách từ A đến mặt phẳng (A'BC) bằng a và AA' hợp với mặt phẳng (A'BC) một góc 300 . Tính thể tích lăng trụ ĐS: Bài 6: Cho hình hộp chữ nhật ABCD A'B'C'D' có đường chéo A'C = a và biết rằng A'C hợp với (ABCD) một góc 30o và hợp với (ABB'A') một góc 45o . Tính thể tích của khối hộp chữ nhật. Đs: Bài 7: Cho hình hộp đứng ABCD A'B'C'D' có đáy ABCD là hình vuông . Gọi O là tâm của ABCD và OA' = a .Tính thể tích của khối hộp khi: ABCD A'B'C'D' là khối lập phương . OA' hợp với đáy ABCD một góc 60o . A'B hợp với (AA'CC') một góc 30o. Đs:1);2) ;3) Bài 8: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông và BD' = a . Tính thể tích lăng trụ trong các trường hợp sau đây: 1) BD' hợp với đáy ABCD một góc 60o . 2) BD' hợp với mặt bên (AA'D'D) một góc 30o . Đs: 1)V = 2)V = Bài 9: Chiều cao của lăng trụ tứ giác đều bằng a và góc của 2 đường chéo phát xuất từ một đỉnh của 2 mặt bên kề nhau là 60o.Tính thể tích lăng trụ và tổng diện tích các mặt của lăng trụ . Đs: V = a3 và S = 6a2 Bài 10 : Cho hình hộp chữ nhật ABCD A'B'C'D' có AB = a ; AD = b ; AA' = c và BD' = AC' = CA' = Chúng minh ABCD A'B'C'D' là hộp chữ nhật. Gọi x,y,z là góc hợp bởi một đường chéo và 3 mặt cùng đi qua một đỉng thuộc đường chéo. Chứng minh rằng . 3) Dạng 3: Lăng trụ đứng có góc giữa 2 mặt phẳng Ví dụ 1: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại B với BA = BC = a ,biết (A'BC) hợp với đáy (ABC) một góc 600 .Tính thể tích lăng trụ. phân tích yêu cầu của đề bài ra các yêu cầu nhỏ: + Nhận xét AB và A'B có vuông góc với BC không ? tại sao? + Suy ra góc[(A'BC);(ABC)] = ? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diện tích B của tam giác ABC bằng công thức nào ? + Tìm h = AA' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ? Lời giải: Ta có Vậy SABC = Vậy V = SABC.AA' = Ví dụ 2: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều . Mặt (A’BC) tạo với đáy một góc 300 và diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ. phân tích yêu cầu của đề bài ra các yêu cầu nhỏ: + Nhận xét có hình tính gì ? Suy ra I là trung điểm của BC cho ta vị trí AI và A'I thế nào với BC? Suy ra góc[(A'BC);(ABC)] = ? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Đặt BC = 2x . Suy ra A'I bởi tam giác nào ? + Từ diện tích tam giá A"BC suy ra x bởi công thức nào? + Tìm h = AA' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ? Giải: đều mà AA' nên A'I(đl 3). Vậy góc[(A'BC);)ABC)] = = 30o Giả sử BI = x .Ta có A’A = AI.tan 300 = Vậy VABC.A’B’C’ = CI.AI.A’A = x3 Mà SA’BC = BI.A’I = x.2x = 8 Do đó VABC.A’B’C’ = 8 Ví dụ 3: Cho lăng trụ tứ giác đều ABCD A'B'C'D' có cạnh đáy a và mặt phẳng (BDC') hợp với đáy (ABCD) một góc 60o.Tính thể tích khối hộp chữ nhật. phân tích yêu cầu của đề bài ra các yêu cầu nhỏ: + Xác định góc[BDC');(ABCD)] = ? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diện tích B của ABCD bằng công thức nào ? + Tìm h = CC' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ? Gọi O là tâm của ABCD . Ta có ABCD là hình vuông nên CC'(ABCD) nên OC'BD (đl 3). Vậy góc[(BDC');(ABCD)] = = 60o Ta có V = B.h = SABCD.CC' ABCD là hình vuông nên SABCD = a2 vuông nên CC' = OC.tan60o = Vậy V = Ví dụ 4: Cho hình hộp chữ nhật ABCD A'B'C'D' có AA' = 2a ; mặt phẳng (A'BC) hợp với đáy (ABCD) một góc 60o và A'C hợp với đáy (ABCD) một góc 30o .Tính thể tích khối hộp chữ nhật. phân tích yêu cầu của đề bài ra các yêu cầu nhỏ: + Nhận xét AB và A'B có vuông góc với BC không ? tại sao? + Suy ra góc[(A'BC);(ABCD)] = ? + Tìm hình chiếu của A'C trên (ABCD) ? Suy ra góc[A'C,(ABCD)] = ? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diện tích B của ABCD bằng công thức nào ? + Tìm AB và AC bởi tam giác vuông nào? Dùng hệ thức lượng giác nào ? + Tìm h = AA' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ? Ta có AA' AC là hình chiếu của A'C trên (ABCD) . Vậy góc[A'C,(ABCD)] = BC AB BC A'B (đl 3) . Vậy góc[(A'BC),(ABCD)] = AC = AA'.cot30o = AB = AA'.cot60o = Vậy V = AB.BC.AA' = Bài tập tương tự: Bài 1: Cho hộp chữ nhật ABCD A'B'C'D' có AA' = a biết đường chéo A'C hợp với đáy ABCD một góc 30o và mặt (A'BC) hợp với đáy ABCD một góc 600 . Tính thể tích hộp chữ nhật. Đs: Bài 2: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông và cạnh bên bằng a biết rằng mặt (ABC'D') hợp với đáy một góc 30o.Tính thể tích khối lăng trụ. Đs: V = 3a3 Bài 3: Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông cân tại B và AC = 2a biết rằng (A'BC) hợp với đáy ABC một góc 45o. Tính thể tích lăng trụ. Đs: Bài 4: Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác cân tại A với AB = AC = a và biết rằng (A'BC) hợp với đáy ABC một góc 45o. Tính thể tích lăng trụ. Đs: Bài 5: : Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông tại B và BB' = AB = h biết rằng (B'AC) hợp với đáy ABC một góc 60o. Tính thể tích lăng trụ. Đs: Bài 6: Cho lăng trụ đứng ABC A'B'C' có đáy ABC đều biết cạnh bên AA' = a Tính thể tích lăng trụ trong các trường hợp sau đây: Mặt phẳng (A'BC) hợp với đáy ABC một góc 60o . A'B hợp với đáy ABC một góc 45o. Chiều cao kẻ từ A' của tam giác A'BC bằng độ dài cạnh đáy của lăng trụ. Đs: 1) ; 2) V = ; V = Bài 7: Cho lăng trụ tứ giác đều ABCD A'B'C'D' có cạnh bên AA' = 2a .Tính thể tích lăng trụ trong các trường hợp sau đây: Mặt (ACD') hợp với đáy ABCD một góc 45o . BD' hợp với đáy ABCD một góc 600 . Khoảng cách từ D đến mặt (ACD') bằng a . Đs: 1) V = 16a3 . 2) V = 12a3 .3) V = Bài 8: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông cạnh a Tính thể tích lăng trụ trong các trường hợp sau đây: 1)Mặt phẳng (BDC') hợp với đáy ABCD một góc 60o . 2)Tam giác BDC' là tam giác đều. 3)AC' hợp với đáy ABCD một góc 450 Đs: 1) ; 2) V = ; V = Bài 9: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình thoi cạnh a và góc nhọn A = 60o .Tính thể tích lăng trụ trong các trường hợp sau đây: 1)Mặt phẳng (BDC') hợp với đáy ABCD một góc 60o . 2)Khoảng cách từ C đến (BDC') bằng 3)AC' hợp với đáy ABCD một góc 450 Đs: 1) ; 2) V = ; V = Bài 10: Cho hình hộp chữ nhật ABCD A'B'C'D' có BD' = 5a ,BD = 3a Tính thể tích khối hộp trong các trường hợp sau đây: 1) AB = a 2) BD' hợp với AA'D'D một góc 30o 3) (ABD') hợp với đáy ABCD một góc 300 Đs: 1) ; 2) V = ; V = 4) Dạng 4: Khối lăng trụ xiên Ví dụ 1: Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a , biết cạnh bên là và hợp với đáy ABC một góc 60o . Tính thể tích lăng trụ. phân tích yêu cầu của đề bài ra các yêu cầu nhỏ: + Xác định góc giữa cạnh bên với đáy : Hình chiếu của CC' trên (ABC) là gì? + Suy ra góc[CC';(ABC)] = ? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diện tích B của tam giác ABC bằng công thức nào ? + Tìm h = CC' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ? Lời giải: Ta có là hình chiếu của CC' trên (ABC) Vậy SABC = .Vậy V = SABC.C'H = Ví dụ 2: Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a . Hình chiếu của A' xuống (ABC) là tâm O đường tròn ngoại tiếp tam giác ABC biết AA' hợp với đáy ABC một góc 60 . 1) Chứng minh rằng BB'C'C là hình chữ nhật. 2) Tính thể tích lăng trụ . phân tích yêu cầu của đề bài ra các yêu cầu nhỏ: + Xác định góc giữa cạnh bên AA' với đáy ABC : Hình chiếu của AA' trên (ABC) là gì? Suy ra góc[AA'';(ABC)] = ? +Chứng minh BC AA' bằng cách Chứng minh BC mặt phẳng nào ? Tứ đó có thể BCCC' không ? tại sao? Vậy BB'C'C là hình gì? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diện tích B của tam giác ABC bằng công thức nào ? + Tìm h = AA'' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ? Lời giải: 1) Ta có là hình chiếu của AA' trên (ABC) Vậy Ta có BB'CC' là hình bình hành ( vì mặt bên của lăng trụ) tại trung điểm H của BC nên (đl 3 ) mà AA'//BB' nên .Vậy BB'CC' là hình chữ nhật. 2) đều nên Vậy V = SABC.A'O = Ví dụ 3: Cho hình hộp ABCD.A’B’C’D’ có đáy là hình chữ nhật với AB = AD =.Hai mặt bên (ABB’A’) và (ADD’A’) lần lượt tạo với đáy những góc 450 và 600. . Tính thể tích khối hộp nếu biết cạnh bên bằng 1. phân tích yêu cầu của đề bài ra các yêu cầu nhỏ: + Xác định góc giữa mặt bên với đáy.Dựng đường cao A'H và HNAD HMAB Suy ra góc[(ABB'A');(ABCD)] =? góc[(ADD'A');(ABCD)] = ? + Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? + Tìm diện tích B của ABCD bằng công thức nào ? + Tìm h = A'H không dùng trực tiếp tam giác vuông nào được ? Đặt x = A'H + Dùng hai tam giác nào bởi định lý gì để tạo ra phương trình theo x ? Lời giải: Kẻ A’H ,HM (đl 3) Đặt A’H = x . Khi đó A’N = x : sin 600 = AN = Mà HM = x.cot 450 = x Nghĩa là x = Vậy VABCD.A’B’C’D’ = AB.AD.x = Bài tập tương tự: Bài 1: Cho lăng trụ ABC A'B'C'có các cạnh đáy là 13;14;15và biết cạnh bên bằng 2a hợp với đáy ABCD một góc 45o . Tính thể tích lăng trụ. Đs: V = Bài 2: Cho lăng trụ ABCD A'B'C'D'có đáy ABCD là hình vuông cạnh a và biết cạnh bên bằng 8 hợp với đáy ABC một góc 30o.Tính thể tích lăng trụ. Đs: V =336 Bài 3: Cho hình hộp ABCD A'B'C'D'có AB =a;AD =b;AA' = c và và biết cạnh bên AA' hợp với đáy ABC một góc 60o.Tính thể tích lăng trụ. Đs: V = Bài 4 : Cho lăng trụ tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a và điểm A' cách đều A,B,C biết AA' = .Tính thể tích lăng trụ. Đs: Bài 5: Cho lăng trụ ABC A'B'C' có đáy ABC là tam giác đều cạnh a , đỉnh A' có hình chiếu trên (ABC) nằm trên đường cao AH của tam giác ABC biết mặt bêb BB'C'C hợp vớio đáy ABC một góc 60o . Chứng minh rằng BB'C'C là hình chữ nhật. Tính thể tích lăng trụ ABC A'B'C'. Đs: Bài 6: Cho lăng trụ ABC A'B'C' có đáy ABC là tam giác đều với tâm O. Cạnh b CC' = a hợp với đáy ABC 1 góc 60o và C' có hình chiếu trên ABC trùng với O .

File đính kèm:

  • docChuyen de HHKGTH cho HS TBY.doc