Giáo án môn Giải tích lớp 12 - Tiết 7 - Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

 Biết các khái niệm GTLN, GTNN của hàm số trên một tập hợp số.

 Nắm được qui tắc tìm GTLN, GTNN của hàm số.

 Kĩ năng:

 Biết cách tìm GTLN, GTNN của hàm số trên một đoạn, một khoảng.

Phân biệt việc tìm GTLN, GTNN với tìm cực trị của hàm số

 

doc2 trang | Chia sẻ: manphan | Lượt xem: 994 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Giáo án môn Giải tích lớp 12 - Tiết 7 - Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 15/08/2009 Chương I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ Tiết dạy: 07 Bài 3: GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ I. MỤC TIÊU: Kiến thức: Biết các khái niệm GTLN, GTNN của hàm số trên một tập hợp số. Nắm được qui tắc tìm GTLN, GTNN của hàm số. Kĩ năng: Biết cách tìm GTLN, GTNN của hàm số trên một đoạn, một khoảng. Phân biệt việc tìm GTLN, GTNN với tìm cực trị của hàm số. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về tính đơn điệu và cực trị của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (5') H. Cho hàm số . Hãy tìm cực trị của hàm số. So sánh giá trị cực trị với ? Đ. , ; , . 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 15' Hoạt động 1: Tìm hiểu khái niệm GTLN, GTNN của hàm số · Từ KTBC, GV dẫn dắt đến khái niệm GTLN, GTNN của hàm số. · GV cho HS nhắc lại định nghĩa GTLN, GTNN của hàm số. · GV hướng dẫn HS thực hiện. H1. Lập bảng biến thiên của hàm số ? · Các nhóm thảo luận và trình bày. Đ1. Þ f(x) không có GTLN trên (0;+∞) I. ĐỊNH NGHĨA Cho hàm số y = f(x) xác định trên D. a) b) VD1: Tìm GTLN, GTNN của hàm số sau trên khoảng (0; +∞) 10' Hoạt động 2: Tìm hiểu cách tìm GTLN, GTNN của hàm số trên một khoảng · GV hướng dãn cách tìm GTLN, GTNN của hàm số liên tục trên một khoảng. H1. Lập bảng biến thiên của hàm số ? Đ1. Þ không có GTLN. II. CÁCH TÍNH GTLN, GTNN CỦA HÀM SỐ LIÊN TỤC TRÊN MỘT KHOẢNG Dựa vào bảng biến thiên để xác định GTLN, GTNN của hàm số liên tục trên một khoảng. VD2: Tính GTLN, GTNN của hàm số . 10' Hoạt động 3: Vận dụng cách tìm GTLN, GTNN của hàm số để giải toán · GV hướng dẫn cách giải quyết bài toán. H1. Tính thể tích khối hộp ? H2. Nêu yêu cầu bài toán ? H3. Lập bảng biến thiên ? Đ1. Đ2. Tìm x0 Î sao cho V(x0) có GTLN. Đ3. Þ VD3: Cho một tấm nhôm hình vuông cạnh a. Người ta cắt ở bốn góc bốn hình vuông bằng nhau, rồi gập tấm nhôm lại thành một cái hộp không nắp. Tính cạnh của các hình vuông bị cắt sao cho thể tích của khối hộp là lớn nhất. 3' Hoạt động 4: Củng cố Nhấn mạnh: – Cách tìm GTLN, GTNN của hàm số liên tục trên một khoảng. 4. BÀI TẬP VỀ NHÀ: Làm bài tập 4, 5 SGK. Đọc tiếp bài "GTLN, GTNN của hàm số". IV. RÚT KINH NGHIỆM, BỔ SUNG:

File đính kèm:

  • docgt12cb 07.doc