Giáo án môn Toán khối 11 - Phương trình lượng giác cơ bản
cot(x2 + 4x + 3) = cot6
9. Tìm nghiệm dương nhỏ nhất của pt
cos
10. Tìm nghiệm dương nhỏ nhất của pt
sin
11. Tìm nghiệm dương nhỏ nhất của pt
Bạn đang xem nội dung tài liệu Giáo án môn Toán khối 11 - Phương trình lượng giác cơ bản, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
D¹ng 1: Ph¬ng tr×nh lîng gi¸c c¬ b¶n
Lo¹i 1. Biện luận theo k
1. sin (pcosx) = 1
2. cos(8sinx) = -1
3. tan(pcosx ) = cot(p sinx)
4. cos(psinx) = cos(3psinx) 
5. tan(p cosx) = tan(2p cosx)
6. sinx2 = 
8. cot(x2 + 4x + 3) = cot6
9. Tìm nghiệm dương nhỏ nhất của pt 
 cos
10. Tìm nghiệm dương nhỏ nhất của pt 
 sin
11. Tìm nghiệm dương nhỏ nhất của pt 
 cos
Lo¹i 2. Công thức hạ bậc
1. 4cos2(2x - 1) = 1
2. 2sin2 (x + 1) = 1
3. cos2 3x + sin2 4x = 1
4. sin(1 - x) = 
5. 2cosx + 1 = 0
6. tan2 (2x – ) = 2
7. cos2 (x – ) = sin2(2x + ) 
Lo¹i 3. Công thức cộng, biến đổi
1. sin2x + cos2x = sin3x 
2. cos3x – sinx = (cosx –sin3x )
3. 
4. sin3x = cos(x – p /5) + cos3x 
5. sin(x + p /4) + cos(x + p /4) = cos7x 
6. Tìm tất cả các nghiệm x của pt: sinxcos+ cosxsin= 
Lo¹i 4. Bài toán biện luận theo m
1. Giải và biện luận 
	2sin(1-2x) = m
2. 3cos23x = m
3. sin3x + cos3x = m
4. m.sin2 2x + cos4x = m
5. Giải và biện luận 
 sin2x – 2m = (6m + 7)sin2x 
6. Giải và biện luận 
 (3m + 5).sin(x + p/2) = (2m + 3)cosx -m
7. Giải và biện luận 
 cos3x + m – 5 = (3- 2m)cos3x 
8. Cho pt sin4x + cos4x = m
Xác định m để pt có nghiệm
Giải pt với m = ¾
Lo¹i 5. Tổng hợp
1. cos22x – sin28x = sin()
2. sin23x – cos24x = sin25x – cos26x
3. 
4. 
5. Tìm tất cả các nghiệm x của pt:
 sin(2x + = 1 + 2sinx
6. Giải pt:
 4sin3xcos3x +4cos3xsin3x + 3cos4x = 3
7. 
 = 
8. 4sin32x + 6sin2x = 3
9. Tìm nghiệm nguyên của pt: 
D¹ng 2: Ph¬ng tr×nh bËc nhÊt, bËc hai vµ bËc cao ®èi víi mét hµm sè lîng gi¸c
1/ 	2/ 4sin3x + 3sin2x = 8sinx 
3/ 4cosx.cos2x + 1 = 0 	4/ 
5/ Cho 3sin3x - 3cos2x + 4sinx - cos2x + 2 = 0(1) vµ cos2x + 3cosx(sin2x - 8sinx) = 0(2)
 T×m n0 cña (1) ®ång thêi lµ n0 cña (2) ( nghiÖm chung sinx = )
6/ sin3x + 2cos2x - 2 = 0 	7/ tanx + - 2 = 0 
b / + tanx = 7	c / sin6x + cos4x = cos2x 
8/ sin() - 3cos() = 1 + 2sinx 
9/ 	10/ cos2x + 5sinx + 2 = 0 
11/ tanx + cotx = 4 	12/ 
13/ 	14/ cos2x + 3cosx + 2 = 0 
15/ 	16/ 2cosx - = 1
17. 	18. 
19. 	20.
21. 	22. 
23. 	24. 
25. 	25. 
D¹ng 3: Ph¬ng tr×nh bËc nhÊt ®èi víi sinx vµ cosx
1. NhËn d¹ng:
2. Ph¬ng ph¸p: C¸ch 1: asinx + bcosx = c
§Æt cosx= ; sinx= 
C¸ch 2: 
§Æt 
C¸ch 3: §Æt ta cã 
Chó ý: §iÒu kiÖn PT cã nghiÖm: 
§¨c biÖt :
gi¶i ph¬ng tr×nh:
1. , 	2. 
3. , 	4. 
5. , 	6. 
7. 	8. 	 
9. ; 	10. 2sin15x + cos5x + sin5x = 0 (4) 	2. 
 	12. 13. ( cos2x - sin2x) - sinx – cosx + 4 = 0 	14. 
15. 16.
17. T×m GTLN vµ GTNN cña c¸c hµm sè sau:
	a. y = 2sinx + 3cosx + 1	b. 
	c. 	 
D¹ng 4: Ph¬ng tr×nh ®¼ng cÊp ®èi víi sinx vµ cosx
	1. NhËn d¹ng:
§¼ng cÊp bËc 2: asin2x + bsinx.cosx + c cos2x = 0
 	C¸ch 1: Thö víi cosx = 0; víi cosx0, chia 2 vÕ cho cos2x ta ®îc:
atan2x + btanx + c = d(tan2x + 1)
	C¸ch 2: ¸p dông c«ng thøc h¹ bËc 
§¼ng cÊp bËc 3: asin3x + bcos3x + c(sinx + cosx) = 0 
HoÆc asin3x + b.cos3x + csin2xcosx + dsinxcos2x = 0 
XÐt cos3x = 0 vµ cosx0, chia 2 vÕ cho cos3x ta ®îc ph¬ng tr×nh bËc 3 ®èi víi tanx
	2. Ph¬ng ph¸p: 
Gi¶i ph¬ng tr×nh
1. 3sin2x - sinxcosx+2cos2x cosx=2 	2. 4 sin2x + 3sinxcosx - 2cos2x=4
3. 3 sin2x+5 cos2x-2cos2x - 4sin2x=0 	4. sinx - 4sin3x + cosx = 0 
5. 2 sin2x + 6sinxcosx + 2(1 + )cos2x – 5 - = 0
6. (tanx - 1)(3tan2x + 2tanx + 1) =0 	7. sin3x - sinx + cosx – sinx = 0 
8. tanxsin2x - 2sin2x = 3(cos2x + sinxcosx) 	9. 3cos4x - 4sin2xcos2x + sin4x = 0 
10. 4cos3x + 2sin3x - 3sinx = 0 	11. 2cos3x = sin3x 
12. cos3x - sin3x = cosx + sinx 	13. sinxsin2x + sin3x = 6cos3x 
14. sin3(x - /4) =sinx 
D¹ng 5: Ph¬ng tr×nh ®èi xøng ®èi víi sinx vµ cosx
	1. NhËn d¹ng:
	2. Ph¬ng ph¸p: 
* a(sin x + cosx) + bsinxcosx = c ®Æt t = sin x + cosx 	
 	 at + b = c bt2 + 2at – 2c – b = 0
* a(sin x - cosx) + bsinxcosx = c ®Æt t = sin x - cosx 	
	 at + b = c bt2 - 2at + 2c – b = 0
1. 2(sinx +cosx) + sin2x + 1 = 0	2. sinxcosx = 6(sinx – cosx – 1)
3. 	3. 
1. 1 + tanx = 2sinx + 	2. sin x + cosx= - 
3. sin3x + cos3x = 2sinxcosx + sin x + cosx 	4. 1- sin3x+ cos3x = sin2x 
5. 2sinx+cotx=2 sin2x+1 	6. sin2x(sin x + cosx) = 2 
7. (1+sin x)(1+cosx)=2 	8. (sin x + cosx) = tanx + cotx
9. 1 + sin3 2x + cos32 x = sin 4x 	10.* 3(cotx - cosx) - 5(tanx - sin x) = 2
11.* cos4x + sin4x - 2(1 - sin2xcos2x)sinxcosx - (sinx + cosx) = 0
12. 	13. sinxcosx + = 1 
14. cosx + + sinx + = 
D¹ng 6: Ph¬ng tr×nh ®èi xøng ®èi víi sinx vµ cosx
C«ng thøc h¹ bËc 2 	cos2x = ; sin2x= 
 	C«ng thøc h¹ bËc 3	 cos3x= ; sin3x= 
Gi¶i ph¬ng tr×nh
1/ sin2 x + sin23x = cos22x + cos24x 	2/ cos2x + cos22x + cos23x + cos24x = 3/2
3/ sin2x + sin23x - 3cos22x=0 	4/ cos3x + sin7x = 2sin2() - 2cos2
5/ cos4x – 5sin4x = 1 	6/ 4sin3x - 1 = 3 - cos3x 
7/ sin22x + sin24x = sin26x	8/ sin2x = cos22x + cos23x 
9/ (sin22x + cos42x - 1):= 0	10/ 2cos22x + cos2x = 4 sin22xcos2x
11/ sin3xcos3x +cos3xsin3x=sin34x 	12/ 8cos3(x + ) = cos3x
13/ = 1 	14/ cos7x + sin22x = cos22x - cosx 15/ sin2x + sin22x + sin23x = 3/2	16/ 3cos4x – 2cos23x =1
17/ sin24 x+ sin23x= cos22x+ cos2x víi	
18/ sin24x - cos26x = sin() víi 
19/ 4sin3xcos3x + 4cos3x sin3x + 3cos4x = 3 	
20/ cos4xsinx - sin22x = 4sin2() - víi < 3 
21/ 2cos32x - 4cos3xcos3x + cos6x - 4sin3xsin3x = 0 
22/ cos10x + 2cos24x + 6cos3xcosx = cosx + 8cosxcos23x 
D¹ng 7: Ph¬ng tr×nh lîng gi¸c bËc cao
* a3 b3=(ab)(a2 ab + b2) 	* a8 + b8 = ( a4 + b4)2 - 2a4b4
* a4 - b4 = ( a2 + b2)(a2 - b2) 	* a6 b6 = ( a2 b2)( a4 a2b2 + b4)
Gi¶i ph¬ng tr×nh
1. sin4+cos4=1-2sinx 	2. cos3x-sin3x=cos2x-sin2x 
3. cos3x+ sin3x= cos2x 	4. 
5. cos6x - sin6x = cos22x 	6. sin4x + cos4x = 
7. cos6x + sin6x = 2(cos8x + sin8x) 	8. cos3x + sin3x = cosx – sinx 
9. cos6x + sin6x = cos4x 	 
10. sinx + sin2x + sin3x + sin4x = cosx + cos2x + cos3x + cos4x 
11. cos8x + sin8x = 	12. (sinx + 3)sin4 - (sinx + 3)sin2 + 1 = 0 
D¹ng 8: Ph¬ng tr×nh lîng gi¸c biÕn ®æi vÒ tÝch b»ng 0
1/ cos2x - cos8x + cos4x = 1 	2/ sinx + 2cosx + cos2x – 2sinxcosx = 0
3/ sin2x - cos2x = 3sinx + cosx - 2 	4/ sin3 x + 2cosx – 2 + sin2 x = 0
5/ 3sinx + 2cosx = 2 + 3tanx 	6/ sin2x + cos2x + cosx = 0 
7/ 2sin2x - cos2x = 7sinx + 2cosx - 4 	
8/ 	9/ 2cos2x - 8cosx + 7 = 	
10/ cos8x + sin8x = 2(cos10x + sin10x) + cos2x 
11/ 1 + sinx + cos3x = cosx + sin2x + cos2x
12/ 1 + sinx + cosx + sin2x + cos2x = 0 	
13/ sin2 x(tanx + 1) = 3sinx(cosx - sinx) + 3
14/ 2sin3x - = 2cos3x + 
15/ tanx – sin2x - cos2x + 2(2cosx - ) = 0 
16/ cos3x + cos2x + 2sinx – 2 = 0 	17/ cos2x - 2cos3x + sinx = 0 	
18/ sin2x = 1+cosx + cos2x 	19/ 1 + cot2x = 
20/ 2tanx + cot2x = 2sin2x + 	21/ cosx(cos4x + 2) + cos2x - cos3x = 0 
22/ 1 + tanx = sinx + cosx 	23/ (1 - tanx)(1 + sin2x) = 1 + tanx 
24/ 2= 	25/ 2tanx + cotx = 
26/ cotx – tanx = cosx + sinx 	27/ 9sinx + 6cosx - 3sin2x + cos2x = 8 
            File đính kèm:
 Phan loai bai tap PTLG.doc Phan loai bai tap PTLG.doc





