I. MỤC TIÊU
· Học sinh nắm được định lí về tổng ba góc của một tam giác.
· Biết vận dụng định lí trong bài để tính số đo các góc của một tam giác.
· Có ý thức vận dụng các kiến thức được học vào các bài toán.
· Phát huy trí lực của học sinh.
II. PHƯƠNG TIỆN DẠY HỌC
· GV : Thước thẳng, thước đo góc, bút dạ, giấy trong, đèn chiếu, một miếng bìa hình tam giác (lớn), kéo cắt giấy.
· HS : Thước thẳng, thước đo góc, miếng bìa hình tam giác (nhỏ), kéo cắt giấy.
II. QUÁ TRÌNH DẠY HỌC TRÊN LỚP :
67 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1089 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Toán 6 - Tiết 17 đến tiết 46, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TuÇn: TiÕt: 17
Ngày soạn:
Ngày dạy :
§1. TỔNG BA GÓC CỦA TAM GIÁC
(Tiết 1)
I. MỤC TIÊU
Học sinh nắm được định lí về tổng ba góc của một tam giác.
Biết vận dụng định lí trong bài để tính số đo các góc của một tam giác.
Có ý thức vận dụng các kiến thức được học vào các bài toán.
Phát huy trí lực của học sinh.
II. PHƯƠNG TIỆN DẠY HỌC
GV : Thước thẳng, thước đo góc, bút dạ, giấy trong, đèn chiếu, một miếng bìa hình tam giác (lớn), kéo cắt giấy.
HS : Thước thẳng, thước đo góc, miếng bìa hình tam giác (nhỏ), kéo cắt giấy.
II. QUÁ TRÌNH DẠY HỌC TRÊN LỚP :
Hoạt động của GV
Họat động của HS
Hoạt động 1 : KIỂM TRA VÀ THỰC HÀNH ĐO TỔNG BA GÓC
CỦA MỘT TAM GIÁC (8 ph)
Yêu cầu :
Vẽ hai tam giác bất kì. Dùng thước đo góc đo ba góc của mỗi tam giác.
2) Có nhận xét gì về các kết quả trên?
* Giáo viên lấy thêm kết quả của một vài HS.
GV hỏi : Những em nào có chung nhận xét là “Tổng ba góc của tam giác bằng 1800” ?
- GV nhận xét họat động
* Thực hành cắt ghép ba góc của một tam giác.
- GV sử dụng một tấm bìa lớn hình tam giác.
Lần lượt tiến hành từng thao tác như SGK.
- GV : Hãy nêu dự đoán về tổng ba góc của một tam giác.
- GV có thể hướng dẫn để HS quan sát cách gấp hình khác :
Cho AD = DB; AE = EC
Gấp theo DE để A trùng H (H Ỵ BC)
Gấp theo trung trực của BH để B trùng H.
Gấp theo trung trực của CH để C trùng H.
Từ đó nhận xét :
 + + = ++= 1800
* GV nói: Bằng thực hành đo, gấp hình chúng ta có dự đoán: Tổng ba góc của tam giác bằng 1800. Đó là một định lí rất quan trọng của hình học. Hôm nay chúng ta sẽ học định lí đó.
Hai HS làm trên bảng, toàn lớp làm trên vở (hoặc giấy trong) trong 5 phút.
A
B
C
M
N
K
 = =
= =
= =
Nhận xét :
 + + = 1800
++ = 1800
HS giơ tay (nếu có chung nhận xét)
Tất cả HS sử dụng tấm bìa hình tam giác đã chuẩn bị.
Cắt ghép theo SGK và hướng dẫn của GV.
HS : Nhận xét.
Tổng ba góc của tam giác bằng 1800.
A
E
B
H
D
1
2
3
C
Hoạt động 2 : 1) TỔNG BA GÓC CỦA TAM GIÁC (10 ph)
- GV hỏi : Bằng lập luận, em nào có thể chứng minh định lí này?
- Nếu học sinh không trả lời được thì giáo viên có thể hướng dẫn học sinh như sau :
+ Vẽ DABC
+ Qua A kẻ đường xy song song với BC.
+ Chỉ ra các góc bằng nhau trên hình?
+ Tổng ba góc của tam giác ABC bằng tổng ba góc nào trên hình? Và bằng bao nhiêu?
GV yêu cầu HS khác nhắc lại cách chứng minh định lí.
- Để cho gọn, ta gọi tổng số đo hai góc là tổng hai góc, tổng số đo ba góc là tổng ba góc. Cũng như vậy đối với hiệu hai góc.
1 / Tổng ba góc của một tam giác
HS toàn lớp ghi lại bài : Vẽ hình và viết giả thuyết, kết luận.
x
y
A
B
C
1
2
GT DABC
KL Â + + = 1800
HS nêu cách chứng minh
Chứng minh :
* Qua A kẻ đường thẳng xy//BC ta có:
Â1 = (hai góc sole trong) (1)
Â2 = (hai góc sole trong) (2)
Từ (1) và (2) suy ra
BÂC + + = BÂC + Â1 + Â2 =1800
Hay  + + = 1800
Hoạt động 3 : LUYỆN TẬP CỦNG CỐ (15 ph)
- Aùp dụng định lí trên, ta có thể tìm số đo của một góc trong tam giác ở một số bài tập (đề bài đưa lên màn hình máy chiếu).
* Bài 1 : Cho biết số đo x, y trên các hình vẽ sau?
* GV cho học sinh đọc hình và suy nghĩ trong ba phút. Sau đó, mỗi hình gọi 1 HS trả lời.
K
M
N
1200
320
x
P
Q
R
900
410
y
Hình 2
E
F
H
720
590
x
y
A
Hình 1
B
C
700
570
x
Hình 3 Hình 4
HS 1 :
Hình 1 : y = 1800 – (900 + 410) = 490 (Theo định lí tổng ba góc của tam giác).
HS 2 :
Hình 2 : x = 1800 – (1200 + 320)
= 280
HS 3 :
Hình 3 : x = 1800 – (700 + 570)
= 530
HS 4 :
Hình 4 :
DEFH : = 1800 – (590 + 720) = 490
x = 1800 - = 1800 – 490 = 1310
(vì theo tính chất hai góc kề bù nhau)
Tương tự : y = 1800 – 590 = 1210
Hoạt động 4 : DẶN DÒ VỀ NHÀ (2 ph)
* Về nhà học cần nắm vững định lí tổng ba góc trong tam giác.
* Cần làm tốt các bài tập 1, 2 trang 108 SGK.
Bài tập 1; 2; 9 trang 98 SBT.
* Đọc trước mục 2, mục 3 trang 107 SGK.
IV. RÚT KINH NGHIỆM:
TuÇn: TiÕt: 18
Ngày soạn:
Ngày dạy :
TỔNG BA GÓC CỦA TAM GIÁC
(Tiết 2)
A. MỤC TIÊU
HS nắm được định nghĩa và tính chất về góc của tam giác vuông, định nghĩa và tính chất góc ngoài của tam giác.
Biết vận dụng định nghĩa, định lí trong bài để tính số đo các góc của một tam giác, giải một số bài tập.
Giáo dục tính cẩn thận, chính xác và khả năng suy luận của học sinh.
B. PHƯƠNG TIỆN DẠY HỌC
GV : Thước thẳng, êke, thước đo góc, bảng phụ, bút dạ, phấn màu.
HS : Thước thẳng, thước đo góc.
C. TIẾN TRÌNH DẠY HỌC
Hoạt động của GV
Họat động của HS
Hoạt động 1 : KIỂM TRA (8 ph)
GV nêu câu hỏi :
Phát biểu định lí về tổng ba góc của tam giác?
2) Aùp dụng định lí về tổng ba góc của tam giác em hãy cho biết số đo x; y trên các hình vẽ sau :
E
M
F
y
900
560
A
C
720
650
x
a) b)
B
K
Q
R
410
360
x
c)
Sau khi học sinh tìm được các giá trị x; y của bài toán GV giới thiệu : tam giác nhọn, tam giác vuông, tam giác tù.
HS 1 : - Phát biểu định lí tổng ba góc của tam giác.
- Giải bài tập 2(a).
Theo định lí tổng ba góc của tam giác ta có :
DABC : x = 1800 – (650 + 720)
x = 1800 – 1370 = 430
HS 2 : Giải bài tập 2(b, c)
DEFM : y = 1800 – (900 + 560)
y = 1800 – 1460 = 340
DKQR : x = 1800 – (410 + 360)
x = 1800 – 770 = 1030
Hoạt động 2 : ÁP DỤNG VÀO TAM GIÁC VUÔNG (10 ph)
- GV yêu cầu HS đọc định nghĩa tam giác vuông trong SGK trang 107
- GV : Tam giác ABC (có Â = 900) ta nói tam giác ABC vuông tại A.
AB; AC gọi là cạnh góc vuông .
BC (cạnh đối diện góc vuông) gọi là cạnh huyền.
GV yêu cầu : Vẽ tam giác DEF (Ê = 900) chỉ rõ cạnh góc vuông, cạnh huyền?
- Lưu ý học sinh kí hiệu góc vuông trên hình vẽ.
GV hỏi : Hãy tính + = ?
GV hỏi tiếp : - Từ kết quả này ta có kết luận gì?
- Hai góc có tổng số đo bằng 900 là hai góc như thế nào?
- Ta có định lí sau :
“Trong một tam giác vuông, hai góc nhọn phụ nhau”.
2 / Aùp dụng vào tam giác vuông
+ 1 HS đại diện đọc to định nghĩa tam giác vuông trang 107.
+ HS vẽ tam giác vuông ABC (Â = 900).
A
D
F
E
B C
DE, EF : cạnh góc vuông
DF : cạnh huyền
+ 1 HS tính và giải thích.
+ vì theo định lí tổng ba góc của tam giác ta có :
+ Trong tam giác vuông hai góc nhọn có tổng số đo bằng 900.
+ Hai góc có tổng số đo bằng 900 là hai góc phụ nhau.
+ 1 HS đọc định lí về góc tam giác vuông SGK trang 107.
HS khác nhắc lại định lí.
Hoạt động 3 : GÓC NGOÀI CỦA TAM GIÁC (15 ph)
* Giáo viên vẽ góc (như hình) và nói : Góc như trên hình vẽ gọi là góc ngoài tại đỉnh C của tam giác ABC.
- Góc có vị trí như thế nào đối với góc C của DABC?
- Vậy góc ngoài của một tam giác là góc như thế nào? Em hãy đọc ĐN trong SGK, trang 107.
* GV yêu cầu vẽ góc ngoài tại đỉnh B của DABC : ; góc ngoài tại đỉnh A của DABC : CÂt
* GV nói : , , CÂt là các góc ngoài của DABC, các góc A, B, C của DABC còn gọi là các góc trong.
* GV hỏi : Aùp dụng định lí đã học hãy so sánh và Â + ?
* GV nói : = Â +
mà Â và là hai góc trong không kề với góc ngòai , vậy ta có định lí nào về tính chất góc ngoài của tam giác ?
GV : Nhấn mạnh lại nội dung định lí
+ Hãy so sánh và Â, và
Giải thích?
GV : Như vậy góc ngoài của tam giác có số đo như thế nào đối với các góc trong không kề với nó ?
GV hỏi : Quan sát hình vẽ, cho biết góc lớn hơn những góc nào của tam giác ABC ?
A
B
C
x
y
t
3 / Góc ngoài của tam giác
- Góc kề bù với góc C của DABC
- 1 HS đọc ĐN, cả lớp theo dõi và ghi bài.
- 1 HS thực hiện trên bảng, toàn lớp vẽ vào vở ;
HS : = Â +
Vì Â + = 1800 (ĐL tổng ba góc của tam giác)
+ = 1800 (Tính chất hai góc kề bù). Þ = Â +
HS trả lời :
Nhận xét : Mỗi góc ngoài của một tam giác bằng tổng hai góc trong không kề với nó.
HS ghi bài và đọc định lí :
- HS : > Â; >
- Theo định lí về tính chất góc ngoài của tam giác ta có :
Tương tự ta có : >
HS trả lời : Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.
- > Â; >
Hoạt động 4 : LUYỆN TẬP CỦNG CỐØ (10 ph)
Bài 1 : a) Đọc tên các tam giác vuông trong các hình sau, chỉ rõ vuông tại đâu ? (Nếu có)
b) Tìm các giá trị x; y trên các hình
H
A
C
B
x
1
y
500
D
M
I
N
x
y
700
430
430
Hình 1
Hình 2
HS trả lời : Hình 1
a) Tam giác vuông ABC vuông tại A
Tam giác vuông AHB vuông tại H
Tam giác vuông AHC vuông tại H
b) DABH : x = 900 – 500 = 400
DABC : y = 900 –
y = 900 – 500 = 400
Hình 2 :
a) Hình 2 không có tam giác nào vuông.
b) x = 430 + 700 = 1130 (theo định lí về tính chất góc ngoài của tam giác)
y = 1800 – (430 + 1130)
y = 240
Hoạt động 5 : DẶN DÒ (2 ph)
* Nắm vững các định nghĩa, các định lí đã học trong bài.
* Làm tốt các bài tập : 3(b); 4; 5; 6 trang 108 SGK.
Bài tập 3; 5; 6 trang 98 SBT.
* Chuẩn bị bài mới : Hai tam giác bằng nhau.
IV. RÚT KINH NGHIỆM:
TuÇn: TiÕt: 19
Ngày soạn:
Ngày dạy :
LUYỆN TẬP
I. MỤC TIÊU
Qua các bài tập và các câu hỏi kiểm tra, củng cố, khắc sâu kiến thức về:
Tổng ba góc của một tam giác bằng 1800
Trong tam giác vuông 2 góc nhọn có tổng số đo bằng 900
Định nghĩa góc ngoài, định lí về tính chất góc ngoài của tam giác.
- Rèn kỹ năng tính số đo các góc.
- Rèn kỹ năng suy luận.
II. PHƯƠNG TIỆN DẠY HỌC :
GV : Thước thẳng, thước đo góc, bảng phụ, bút dạ, viết đầu bài hoặc vẽ hình trước một số bài tập.
HS : Thước thẳng, compa.
III. QUÁ TRÌNH DẠY HỌC TRÊN LỚP :
Hoạt động của GV
Họat động của HS
Hoạt động 1 : KIỂM TRA (10 ph)
Câu hỏi cho HS 1
a) Nêu định lí về tổng ba góc của một tam giác?
b) Chữa bài tập 2 trang 108 SGK
Câu hỏi cho HS 2 :
a) Vẽ DABC kéo dài cạnh BC về hai phía, chỉ ra góc ngoài tại đỉnh B; tại đỉnh C
b) Theo định lí về tính chất góc ngoài của tam giác thì góc ngoài tại đỉnh B; đỉnh C bằng tổng những góc nào? Lớn hơn những góc nào của DABC.
D
A
C
B
300
800
1
2
HS 1 trả lời câu hỏi và chữa bài tập 2 SGK. (Hình vẽ và giả thuyết, kết luận GV chuẩn bị sẳn).
Â1 = Â2 = = 350
= 1800 – 1150 = 650
= 1800 - =
= 1800 – 650 = 1150
HS 2 vẽ hình lên bảng, chỉ vào hình trả lời miệng.
- Hai HS đại diện lớp nhận xét, đánh giá điểm cho 2 bạn lên bảng.
C
B
Hoạt động 2 : LUYỆN TẬP BÀI TẬP (15 ph)
Bài 1 : (Bài 6 SGK) với hình 55; 57; 58. Tìm số đo x trong các hình.
GV đưa ra từng hình (trên bảng phụ) mỗi hình cho HS quan sát, suy nghĩ trong 1 phút rồi trả lời miệng.
A
I
B
K
H
400
1
2
+ Tìm giá trị của x trong hình 55 như thế nào?
GV ghi lại cách tính x.
* GV : Nêu cách tính x trong hình 57?
N
P
M
I
600
1
x
A
K
E
H
B
x
550
Bài 2 :
Cho hình vẽ.
a) Mô tả hình vẽ
b) Tìm các cặp góc phụ nhau trong hình vẽ
c) Tìm các cặp góc nhọn bằng nhau trong hình vẽ.
HS nêu cách tính x
Cách 1 :
D vuông AHI ( = 900) Þ 400 + = 900 (ĐL)
D vuông BKI ( = 900) Þ x + = 900 (ĐL)
mà = (đối đỉnh) Þ x = 400
Cách 2 :
DAHI : Â + 900 + = 1800
DBKI : x + 900 + = 1800
mà = Þ x = Â = 400
HS trả lời : Theo hình vẽ cho :
DMNI có = 900 Þ + 600 = 900
= 900 – 600 = 300
DNMP có = 900 hay + x = 900
300 + x = 900 x = 600
HS trả lời miệng
DAHE có = 900 Þ Â + Ê = 900 (ĐL)
Þ 550 + Ê = 900 Þ Ê = 900 – 550 = 350
x =
Xét DBKE có góc là góc ngoài của DBKE
Þ = + Ê = 900 + 350 Þ x = 1250
a) Cho tam giác vuông ABC (Â = 1v) và đường cao AH (H Ỵ BC)
b) Các cặp góc phụ nhau :
Â1 và Â2 và
Â1 và Â2 và
c) Các góc nhọn bằng nhau
Â1 = (vì cùng phụ với Â2)
Â2 = (vì cùng phụ với Â1)
Hoạt động 3 : LUYỆP TẬP BÀI TẬP CÓ VẼ HÌNH (10 ph)
Bài 3 (Bài 8 SGK)
* GV vừa vẽ hình vừa hướng dẫn HS vẽ hình theo đầu bài cho
* GV yêu cầu 1 HS viết GT, KL ?
* Quan sát hình vẽ, dựa vào cách nào để chứng minh Ax//BC ?
A
B
C
1
2
H
GV : Hãy chứng minh cụ thể
GV: Để chứng minh Ax//BC cần chỉ ra Ax và BC hợp với cát tuyến AB tạo ra hai góc sole trong hoặc hai góc đồng vị bằng nhau. (Theo ĐL)
GV : hoặc Â1 = = 400 là hai góc đồng vị bằng nhau Þ Ax//BC.
1 HS đọc to đề bài trong SGK
B
A
C
x
y
1
2
400
400
è
ỉ
GT DABC : = = 400
Ax là phân giác góc ngoài tại A
KL Ax//BC
HS trình bày :
Theo đầu bài ta có :
DABC : = = 400 (gt) (1)
yÂB = = 400 + 400 = 800
(theo định lí góc ngoài của tam giác)
Ax là tia phân giác của yÂB
Þ Â1 = Â2 = = = 400 (2)
Từ (1) và (2) Þ = Â2 = 400
mà và Â2 ở vị trí sole trong
Þ tia Ax//BC (theo ĐL về hai đường thẳng song song)
Hoạt động 4 : BÀI TẬP CÓ ỨNG DỤNG THỰC TẾ (7 ph)
Bài 4 (Bài 9 SGK) (hình vẽ sẳn ở bảng phụ)
* GV phân tích đề cho HS, chỉ rõ hình biểu diễn mặt cắt ngang của con đê, mặt nghiêng của con đê,
yêu cầu tính góc nhọn MOP tạo bởi mặt nghiêng của con đê với phương nằm ngang, người ta dùng dụng cụ là thước chữ T và thước đo góc, dây dọi BC đặt như hình vẽ.
GV : Hãy nêu cách tính góc MÔP ?
HS trả lời :
Theo hình vẽ :
DABC có Â = 900 ; = 320
DCOD có = 900
mà = (đối đỉnh)
Þ CÔD = = 320 (cùng phụ với hai góc bằng nhau)
hay MÔP = 320
Hoạt động 5 : HƯỚNG DẪN VỀ NHÀ (3 ph)
- Về nhà học thuộc, hiểu kĩ về định lí tổng các góc của tam giác, định lí góc ngoài của tam giác, định nghĩa, định lí về tam giác vuông trong §1.
- Luyện giải các bài tập áp dụng các định lí trên.
Bài tập 14; 15; 16; 17; 18 SBT.
- Chuẩn bị bài mới: Hai tam giác bằng nhau.
IV. RÚT KINH NGHIỆM:
TuÇn: TiÕt: 20
Ngày soạn:
Ngày dạy :
§2. HAI TAM GIÁC BẰNG NHAU
I. MỤC TIÊU
Học sinh hiểu định nghĩa hai tam giác bằng nhau biết viết kí hiệu về sự bằng nhau của hai tam giác theo quy ước viết tên các đỉnh tương ứng theo cùng một thứ tự.
Biết sử dụng định nghĩa hai tam giác bằng nhau để suy ra các đoạn thẳng bằng nhau.
Rèn luyện khả năng phán đoán, nhận xét.
II. PHƯƠNG TIỆN DẠY HỌC
GV : Thước thẳng, compa, phấn màu, bảng phụ ghi bài tập.
HS : Thước thẳng, compa, thước đo độ.
III. QUÁ TRÌNH DẠY HỌC TRÊN LỚP :
Hoạt động của GV
Họat động của HS
Hoạt động 1 : KIỂM TRA (7 ph)
?1
A
C
B
A’
C’
B’
Cho hai tam giác ABC và A’B’C’
Hãy dùng thước chia khoảng và thước đo góc để kiểm nghiệm rằng trên hình ta có :
AB = A’B’, AC = A’C’, BC = B’C’
 = Â’, = ’, = ’
GV yêu cầu HS khác lên đo kiểm tra.
GV nhận xét cho điểm.
Hai tam giác ABC và A’B’C’ như vậy gọi là hai tam giác bằng nhau ® bài học.
1 HS lên bảng thực hiện đo các cạnh và các góc của hai tam giác.
Ghi kết quả :
AB = ; BC = ; AC =
A’B’ = ; B’C’ = ; A’C’ =
 = ; = ; =
Â’ = ; ’ = ; ’ =
HS khác lên đo lại :
HS nhận xét bài làm của bạn.
Hoạt động 2 : 1) ĐỊNH NGHĨA (8 ph)
* DABC và DA’B’C’ trên có mấy yếu tố bằng nhau ? Mấy yếu tố về cạnh ? Mấy yếu tố về góc ?
GV ghi bảng : DABC và DA’B’C’ có AB = A’B’; AC = A’C’; BC = B’C’;
 = Â’; = ’; = ’ Þ DABC và DA’B’C’ là hai tam giác bằng nhau.
* GV giới thiệu đỉnh tương ứng với đỉnh A là đỉnh A’.
- GV yêu cầu HS tìm đỉnh tương ứng với đỉnh B ? Đỉnh C ?
- GV giới thiệu góc tương ứng với góc A là góc A’. Tìm góc tương ứng với góc B ? Góc C ?
- Giới thiệu cạnh tương ứng với cạnh AB là cạnh A’B’.
Tìm cạnh tương ứng với cạnh AC, BC?
* GV hỏi :
Hai tam giác bằng nhau là hai tam giác như thế nào ?
1 / Định nghĩa
HS : DABC và DA’B’C’ có 6 yếu tố bằng nhau, 3 yếu tố về cạnh, 3 yếu tố về góc.
HS ghi bài.
HS đọc SGK trang 110 :
* Hai đỉnh A và A’; B và B’; C và C’ gọi là hai đỉnh tương ứng.
* Hai góc  và Â’; và ’; và ’ gọi là hai góc tương ứng
* Hai cạnh AB và A’B’ ; AC và A’C’ ; BC và B’C’ gọi là hai cạnh tương ứng.
HS trả lời :
Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.
- 2 HS đọc lại ĐN trong SGK Tr110
Hoạt động 3 : 2) KÍ HIỆU (10 ph)
* Ngoài việc dùng lời để định nghĩa hai tam giác bằng nhau ta có thể dùng kí hiệu để chỉ sự bằng nhau của hai tam giác.
GV yêu cầu HS đọc SGK mục 2 “Kí hiệu” trang 110.
GV ghi :
DABC = DA’B’C’ nếu
GV nhấn mạnh :
Người ta qui ước khi kí hiệu sự bằng nhau của hai tam giác, các chữ cái chỉ tên các đỉnh tương ứng được viết theo cùng thứ tự.
A
B
C
A'
C'
(
)
- Cho HS làm ?2 (Đưa?2 lên màn hình)
B'
?3
-Cho HS làm tiếp
?3
(Đưa lên màn hình)
Cho DABC = DDEF thì tương ứng với góc nào ? Cạnh BC tương ứng với cạnh nào ? Hãy tính góc  của DABC. Từ đó tìm số đo .
Bài 2 : Các câu sau đúng hay sai.
1) Hai tam giác bằng nhau là hai tam giác có sáu cạnh bằng nhau, sáu góc bằng nhau.
2) Hai tam giác bằng nhau là hai tam giác có các cạnh bằng nhau, các góc bằng nhau.
3) Hai tam giác bằng nhau là hai tam giác có diện tích bằng nhau.
GV có thể đưa phản ví dụ cho mỗi câu sai.
Bài 3 : Cho DXEF = DMNP
XE = 3 cm; XF = 4 cm; NP = 3,5 cm
Tính chu vi mỗi tam giác.
* Đầu bài cho gì hỏi gì ? Cách tính như thế nào ?
2 / Kí hiệu
HS đọc SGK
HS ghi vào vở.
HS trả lời miệng :
a) DABC = DMNP
b) Đỉnh tương ứng với đỉnh A là đỉnh M.
Góc tương ứng với góc N là góc B.
Cạnh tương ứng với cạnh AC là cạnh MP.= 40tương ứng với góc N là góc B._________________________________________________________________________________________
c) DACB = DMPN
AC = MP
=
HS : tương ứng với Â.
Cạnh BC tương ứng với cạnh EF.
Một HS lên bảng làm :
HS : Xét DABC có
 + + = 1800 (định lí tổng ba góc của tam giác)
 + 700 + 500 = 1800
Þ Â = 1800 – 1200 = 600
Þ = Â = 600
Sai.
Sai.
Sai.
DXEF = DMNP (gt)
Þ XE = MN; XF = MP; EF = NP
mà XE = 3 cm; XF = 4 cm;
NP = 3,5 cm
Þ EF = 3,5 cm
MN = 3 cm
MP = 4 cm
Chu vi DXEF = XE + XF + EF
= 3 + 4 + 3,5 = 10,5 cm
Chu vi DMNP = MN + NP + MP
= 3 + 3,5 + 4 = 10,5 cm
Hoạt động 4 : DẶN DÒ (3 ph)
- Học thuộc, hiểu định nghĩa hai tam giác bằng nhau.
- Biết viết kí hiệu 2 tam giác bằng nhau một cách chính xác.
- Làm các bài tập : 11; 12; 13; 14 trang 112 SGK. Bài tập 19; 20; 21 SBT.
- Chuẩn bị bài mới: Luyện tập.
IV. RÚT KINH NGHIỆM:
TuÇn: TiÕt: 21
Ngày soạn:
Ngày dạy :
LUYỆN TẬP
I. MỤC TIÊU
Rèn kĩ năng áp dụng định nghĩa hai tam giác bằng nhau để nhận biết hai tam giác bằng nhau, từ hai tam giác bằng nhau chỉ ra các góc tương ứng các cạnh tương ứng bằng nhau.
Giáo dục tính cẩn thận, chính xác trong học toán.
II. PHƯƠNG TIỆN DẠY HỌC
GV : Thước thẳng, compa, bảng phụ.
HS : Thước thẳng.
III. QUÁ TRÌNH DẠY HỌC TRÊN LỚP
Hoạt động của GV
Họat động của HS
Hoạt động 1 : KIỂM TRA (8 ph)
HS : - Định nghĩa hai tam giác bằng nhau.
Chữa bài tập 12 SGK Tr112.
(Đưa đề bài lên bảng phụ )
HS lên bảng trả lời câu hỏi và làm bài tập.
– Nêu định nghĩa hai tam giác bằng nhau
HS làm :
DABC = DHIK
(theo định nghĩa hai tam giác bằng nhau) mà AB = 2 cm; BC = 4 cm; = 400 suy ra DHIK : HI = 2 cm; IK = 4 cm; = 400
Hoạt động 2 : LUYỆN TẬP CỦNG CỐ (36 ph)
Bài tập 1 : Điền tiếp vào dấu … để được câu đúng.
A2
1) DABC = DC1A1B1 thì …
2) DA’B’C’ và DABC có
A’B’ = AB; A’C’ = AC; B’C’ = BC
Â’ = Â; ’ = ; ’ = thì …
3) DNMK và DABC có
NM = AC; NK = AB; MK = BC
= Â; = ; = thì …
Bài tập 2
Cho DDKE có DK = KE = DE = 5 cm và DDKE = DBCO. Tính tổng chu vi hai tam giác đó ?
- Muốn tính tổng hai tam giác trước hết ta cần chỉ ra gì ?
B
C
A
B’
C’
A’
((
((
Bài 3 : Cho hình vẽ sau hãy chỉ ra các tam giác bằng nhau trong mỗi hình.
B2
C2
A2
A1
B1
C1
Hình 1
Hình 2
A
B
C
D
A
B
C
1
2
H
1
2
Hình 3
Hình 4
Bài 4 : (bài 14 trang 112 SGK)
(GV đưa đề bài lên bảng phụ)
Hãy tìm các đỉnh tương ứng của hai tam giác ?
GV nêu câu hỏi củng cố :
- Định nghĩa hai tam giác bằng nhau.
- Khi viết kí hiệu về hai tam giác bằng nhau phải chú ý điều gì ?
HS đọc đề trong 2 phút, mỗi câu cho một đại diện HS trả lời, cả lớp nhận xét.
1) DABC = DC1A1B1 thì
AB = C1A1; AC = C1B1; BC = A1B1
 = 1; = Â1; = 1
2) DA’B’C’ và DABC có
A’B’ = AB; A’C’ = AC; B’C’ = BC
Â’ = Â; ’ = ; ’ =
thì DA’B’C’ = DABC
3) DNMK và DABC có
NM = AC; NK = AB; MK = BC
= Â; = ; =
thì DNMK = DACB
1 HS đọc đề, chỉ rõ đầu bài cho gì, yêu cầu gì ?
1 HS làm trên bảng, cả lớp làm vào nháp.
Ta có DDKE = DBCO (gt)
Þ DK = BC
DE = BO và KE = CO (theo ĐN)
Mà DK = DE = KE = 5 (cm)
Vậy BC = BO = CO = 5 (cm)
Þ Chu vi DDKE + Chu vi DBCO =
3.DK + 3.BC = 3.5 + 3.5 = 30 (cm)
Hình 1 : DABC = DA’B’C’ (theo định nghĩa)
Vì AB = A’B’; AC = A’C’; BC = B’C’
 = Â’; = ’; = ’
Hình 2 : Hai tam giác không bằng nhau.
Hình 3 : DABC = DBDA
Vì AC = BD; CB = DA; AB = BA
= ; ;
Hình 4 : DAHB = DAHC
Vì AB = AC; HB = HC; cạnh AH là cạnh chung.
Â1 = Â2; ; =
HS : Đỉnh B tương ứng với đỉnh K
Đỉnh A tương ứng với đỉnh I.
Đỉnh C tương ứng với đỉnh H.
DABC = DIKH
HS trả lời câu hỏi.
Hoạt động 3 : HƯỚNG DẪN VỀ NHÀ (1 ph)
Xem lại những bài tậpđã chữa.
Bài tập về nhà: Bài tập số 22; 23; 24; 25; 26 trang 100, 101 SBT.
Chuẩn bị bài mới: Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh
Oân lại cách vẽ tam giác biết ba cạnh (ở lớp 6)
Chuẩn bị: Thước thẳng, compa, thước đo góc.
IV. RÚT KINH NGHIỆM:
TuÇn: TiÕt: 22
Ngày soạn:
Ngày dạy :
§3.TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH-CẠNH-CẠNH (C.C.C)
I. MỤC TIÊU
Nắm được trường hợp bằng nhau cạnh-cạnh-cạnh của hai tam giác.
Biết cách vẽ một tam giác biết ba cạnh của nó. Biết sử dụng trường hợp bằng nhau cạnh-cạnh-cạnh để chứng minh hai tam giác bằng nhau, từ đó suy ra các góc tương ứng bằng nhau.
Rèn kỹ năng sử dụng dụng cụ, rèn tính cẩn thận và chính xác trong vẽ hình. Biết trình bày bài toán chứng minh hai tam giác bằng nhau.
II.PHƯƠNG TIỆN DẠY HỌC
GV : Thước thẳng, compa, thước đo góc, một khung hình dạng (như hình 75 trang 116) để giới thiệu mục có thể em chưa biết, bảng phụ ghi đầu bài, hình vẽ của một số bài tập.
HS : Thước thẳng, compa, thước đo góc.
III.QUÁ TRÌNH DẠY HỌC TRÊN LỚP
Hoạt động của GV
Họat động của HS
Hoạt động 1 : KIỂM TRA VÀ ĐẶT VẤN ĐỀ (5 ph)
1) Nêu định nghĩa hai tam giác bằng nhau?
* Để kiểm tra xem hai tam giác có bằng nhau hay không ta kiểm tra những điều kiện gì?
GV đặt vấn đề : Khi định nghĩa tam giác bằng nhau, ta nêu ra sáu điều kiện bằng nhau (3 điều kiện về cạnh, 3 điều kiện về góc).
Trong bài học hôm nay ta sẽ thấy chỉ cần có 3 điều kiện : 3 cạnh bằng nhau từng đôi một cũng có thể nhận biết được hai tam giác bằng nhau.
Þ Bài học : …
Trước khi xem xét về trường hợp bằng nhau thứ nhất của tam giác ta cùng ôn tập : cách vẽ một tam giác khi biết ba cạnh trước.
Hoạt động 2 : VẼ TAM GIÁC BIẾT BA CẠNH (10 ph)
File đính kèm:
- Tiet17-46.doc