Giáo án Toán học khối 7 - Chủ đề:các phép tính trên tập hợp số hữu tỉ

I. MỤC TIÊU:

- Ôn tập, hệ thống hoá các kiến thức về số hữu tỉ.

 - Rèn luyện kỹ năng thực hiện phép tính, kỹ năng áp dụng kiến thức đã học vào từng bài toán.

- Rèn luyện tính cẩn thận, chính xác khi làm bài tập.

II. CHUẨN BỊ:

1. Giáo viên: Bảng phụ,thước kẻ

2. Học sinh: Ôn tập các kiến thức về số hữu tỉ

III. TIẾN TRÌNH DẠY HỌC:

1Ổn định lớp

2. Kiểm tra bài cũ: Xen kẽ

Buổi:1

 

doc67 trang | Chia sẻ: luyenbuitvga | Lượt xem: 969 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Toán học khối 7 - Chủ đề:các phép tính trên tập hợp số hữu tỉ, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày :3/10/2010 Chủ đề:Các phép tính trên tập hợp số hữu tỉ. (Thời lượng dạy 2 buổi ) I. Mục tiêu: - Ôn tập, hệ thống hoá các kiến thức về số hữu tỉ. - Rèn luyện kỹ năng thực hiện phép tính, kỹ năng áp dụng kiến thức đã học vào từng bài toán. - Rèn luyện tính cẩn thận, chính xác khi làm bài tập. II. Chuẩn bị: 1. Giáo viên: Bảng phụ,thước kẻ 2. Học sinh: Ôn tập các kiến thức về số hữu tỉ III. Tiến trình DạY HọC: 1ổn định lớp 2. Kiểm tra bài cũ: Xen kẽ Buổi :1 I. Những kiến thức cần nhớ 1. Định nghĩa: Số hữu tỉ là số cú thể viết dưới dạng với a, b Z; b 0. Tập hợp số hữu tỉ được kớ hiệu là Q. 2. Cỏc phộp toỏn trong Q. a) Cộng, trừ số hữu tỉ: Nếu Thỡ ; b) Nhõn, chia số hữu tỉ: * Nếu * Nếu Thương x : y cũn gọi là tỉ số của hai số x và y, kớ hiệu Chỳ ý: +) Phộp cộng và phộp nhõn trong Q cũng cú cỏc tớnh chất cơ bản như phộp cộng và phộp nhõn trong Z +) Với x Q thỡ : x nếu x |x| = x nếu x < 0 Bổ sung: * Với m > 0 thỡ II. Bài tập Bài 1. Thực hiện phộp tớnh bằng cỏch hợp lớ a) b) Bài làm. a) b) Bài 2. Tính: A = 26 : + : Bài làm Bài 3. Tỡm x, biết: a) ; b) Bài làm. a) b) Bài 4. Tìm x, biết: a. b. KQ: a) x = ; b) - Bài 5: Tìm x, biết: a. b. c. d. KQ: a) x = ; b) x = ; c) x = 3,5 hoặc x = - 0,5 ; d) x = -1/4 hoặc x = -5/4. Bài 6 Tính: (Bài tập về nhà) E = (kết quả:) * Củng cố - Nhắc lại các dạng toán đã chữa. * Hướng dẫn về nhà: - ễn tập kỹ phần lý thuyết - Xem lại cỏc bài toỏn đó chữa Ngày:07/10/2010 Buổi:2 1. Thực hiện phép tính: a) b) c) d) e) f ) g) h) i) k) 2. Thực hiện phép tính: a) b) c) d) e) f) 3. Thực hiện phép tính: a) b) c) d) 4. Thực hiện phép tính: ( tính nhanh nếu có thể ) a) b) c) d) 5.Thực hiện phép tính a) b) c) d) 6*. Thực hiện phép tính: 7. Tìm x biết : a) b) c) d) e) f) g) 8. Tìm x biết : 3.Tìm x biết : e. g. 2.Tìm x biết : 3.Tìm x biết : e. g. 4.Tìm số nguyên x biết : 5.ìm x biết : g. h. i. k. Tìm x biết : * Củng cố: Nhắc lại các dạng bài tập đã chữa. * Hướng dẫn về nhà:Xem lại các bài tập đã làm. Ngày: 03/11/2010 Chủ đề: Các bài toán tìm x ở lớp 7 (Thời lượng dạy 2 buổi ) I. Mục tiêu: - Ôn định nghĩa giá trị tuyệt đối của một số hữu tỉ. Cách tìm giá trị tuyệt đối của một số hữu tỉ. - Rèn kỹ năng giải các bài tập tìm x, thực hiện thành thạo các phép toán. II. Chuẩn bị: 1. Giáo viên: Bảng phụ. 2. Học sinh: Ôn tập các kiến thức chương I III. Tiến trình DạY HọC: 1ổn định lớp 2. Kiểm tra bài cũ: 3. Bài giảng : Buổi:3 A.Lý thuyết: Dạng 1: A(x) = m (m ẻ Q) hoặc A(x) = B(x) Cách giải: Quy tắc : Muốn tìm x dạng: A(x) = B(x) -Ta thực hiện các phép tính ở từng vế (nếu có). -Chuyển các số hạng chứa x sang một vế,các số hạng không chứa x( số hạng đã biết ) chuyển sang vế ngược lại. -Tiếp tục thực hiện các phép tính ở từng vế (nếu có).Đưa đẳng thức cuối cùng về một trong các dạng sau: x có một giá trị kiểu: ax = b ( a≠ 0)ị x= x không có giá trị nào kiểu: ax = b ( a = 0) x có vô số giá trị kiểu: ax = b ( a = 0, b = 0) Sau đây là các ví dụ minh hoạ: Dạng 2: |A(x)| = B ; ( B ≥ 0) Cách giải: Công thức giải như sau: |A(x)| = B ; ( B ≥ 0) ị Dạng 3 :|A(x)| = B(x) Cách giải: Công thức giải như sau: |A(x)| = B(x) ; (B(x) ³ 0) ị |A(x)| = B(x) ; (B(x) <0) ị x không có giá trị nào. Dạng 4: + |B(x)| =0 Cách giải: Công thức giải như sau: + |B(x)| =0 ị Dạng5: |A(x)| = |B(x)| Cách giải: |A(x)| = |B(x)| ị Dạng 6: |A(x)| ± |B(x)| =± c (c ³ 0 ; cẻ Q) Cách giải: Ta tìm x biết: A(x) = 0 (1) giải (1) tìm được x1 = m . Và tìm x biết: B(x) = 0 (2) giải (2) tìm được x2= n. Rồi chia khoảng để phá dấu GTTĐ ( dấu giá trị tuyệt đối) TH1 : Nếu m > n ị x1 > x2 ; ta có các khoảng sau được xét theo thứ tự trước sau: x< x2 ; x2Ê x < x1 ; x1Ê x . + Với x< x2 ta lấy 1 giá trị x = t (tẻ khoảng x< x2;t nguyên cũng được) thay vào từng biểu thức dưới dấu GTTĐ xem biểu thức đó dương hay âm để làm căn cứ khử dâú GTTĐ để giải tiếp. +Với:x2Ê x < x1 hoặc x1Ê x ta cũng làm như trên. TH2 : Nếu m < n ị x1 < x2 ; ta có các khoảng sau được xét theo thứ tự trước sau: x< x1 ; x1Ê x < x2 ; x2Ê x . + Với x< x1 ta lấy 1 giá trị x = t (tẻ khoảng x< x1;t nguyên cũng được) thay vào từng biểu thức dưới dấu GTTĐ xem biểu thức đó dương hay âm để làm căn cứ khử dâú GTTĐ để giải tiếp. +Với:x1Ê x < x2 hoặc x2Ê x ta cũng làm như trên Chú ý: Nếu TH1 xảy ra thì không xét TH2 và ngược lại ;vì không thể cùng một lúc xảy ra 2 TH Sau khi tìm được giá trị x trong mỗi khoảng cần đối chiếu với khoảng đang xét xem x có thuộc khoảng đó không nếu x không thuộc thì giá trị x đó bị loại. Dạng 7:(biểu thức tìm x có số mũ) Dạng n = m hoặc A(x) = mn B. Bài tập: Bài 1 Tìm x biết a) x+ = ; 3 - x = ; b) x- = c) -x- = - d) -x = Bài 2 (biểu thức tìm x có số mũ) Tìm x biết a) 3 = b) 2 = c) x+2 = x+6 và xẻZ * Củng cố - Nhắc lại các dạng toán đã chữa và phương phỏp giải * Hướng dẫn về nhà: - Xem lại các bài tập đã làm. Ngày: 6/11/2010 BUỔI: 4 Các bài toán tìm x đặc biệt ở lớp 7 Bài 3 Tìm x biết: a) + + = với xẽ b) + + - = với xẽ c) Tìm x biết : Bài tập về "giá trị tuyệt đối của một số hữu tỷ" Bài 1: Tìm x biết : =2 ; b) =2 a) ; b) ;c) ;d) 2- ;e) ;f) a) = ; b) =- ; c) -1 + =- ; d) ( x-1)( x + ) =0 e) 4- Bài 2: Tìm x,y,z Q biết : a); b) c) ; d) Bài 3: Tìm giá trị nhỏ nhất của các biểu thức sau: a) ; b) ;c) ; M=5 -1; C= 2 ; E = 2+ 2 d) ; e) D = + ; B = + ; g) C= x2+ -5 h) A =3,7 + ; i) B = -14,2 ; k) C = + +17,5 n) M = + ; p) Bài 4: Tìm giá trị lớn nhất của biểu thức sau: a) ; b) ; c) - ; d) D = - e) P = 4- - ; f) G = 5,5 - ; g) E = - - 14,2 g) A = 5- 3 2 ; B = ; Bài 5: Khi nào ta có: Bài 6: a)Chứng minh rằng:nếu b là số dương và a là số đối của b thì: a+b= + b) Chứng minh rằng :" x,y ẻ Q ³ - Ê + ³ - Bài 7: Tính giá trị biểun thức: Bài 8:Tìm x,y biết: Bài 9: Tìm các số hữu tỷ x biết : a) >7 ; b) -10 Bài 10: Tìm các giá trị của x để biểu thức :A = x2 - 2x có giá trị âm . Bài 11 Tìm các giá trị của x sao cho; a)2x+3>5 ; b) -3x +1 7 ; e) <5 ; g) 2 Bài 12: Với giá trị nào của x thì : a) Với giá trị nào của x thì : x>3x ; b) (x+1)(x-3) 0 ; d) b)Có bao nhiêu số n ẻ Z sao cho (n2-2)(20-n2) > 0 Bài 13: Tính giá trị biểu thức: A = 2x +2xy - y với =2,5 y= - Tính giá trị biểu thức: A = 3a-3ab -b ; B = - Bài 14: Tìm x,y biết :a)2 = ;b) 7,5- 3 =- 4,5 c) + = 0 Bài 15: Phần nguyên của số hữu tỷ x , ký hiệu là là số nguyên lớn nhất không vượt quá x nghĩa là: Ê x< +1. Tìm : ; ; ; Bài 16: Cho A= ; Tìm Bài 15: Tìm phần nguyên của x ( ) biết a) x-1 < 5 < x b)x< 17< x+1 c) x<-10 < x+0,2 Bài 15: Phần lẻ của số hữu tỷ x ký hiệu là , là hiệu x- nghĩa là : = x - . Tìm biết x= ; x= -3,75 ; x = 0, 45 * Củng cố - Nhắc lại các dạng toán đã chữa. * Hướng dẫn về nhà: - Xem lại các bài tập đã làm. - Xem lại luỹ thừa của một số hữu tỉ Ngày:7/11/2010 CHỦ ĐỀ : Luỹ THỪA CỦA MỘT SỐ HỮU TỈ (Thời lượng dạy 2 buổi ) I. Mục tiờu: - Giỳp học sinh nắm được khỏi niệm luỹ thừa với số mũ tự nhiờn của một số hữu tỉ. - Học sinh được củng cố cỏc quy tắc tớnh tớch và thương của hai luỹ thừa cựng cơ số, luỹ thừa của luỹ thừa, luỹ thừa của một tớch, luỹ thừa của một thương. - Rốn kĩ năng ỏp dụng cỏc quy tắc trờn trong tớnh giỏ trị biểu thức, viết dưới dạng luỹ thừa, so sỏnh hai luỹ thừa, tỡm số chưa biết. II. Tiến trỡnh dạy học: 1ổn định lớp 2. Kiểm tra bài cũ: KO 3. Buổi: 5 I. Túm tắt lý thuyết: 1. Luỹ thừa với số mũ tự nhiờn. Luỹ thừa bậc n ủa một số hữu tỉ, kớ hiệu xn, là tớch của n thừa số x (n là số tự nhiờn lớn hơn 1): xn = ( x ẻ Q, n ẻ N, n > 1) Quy ước: x1 = x; x0 = 1; (x ạ 0) Khi viết số hữu tỉ x dưới dạng , ta cú: 2.Tớch và thương của hai luỹ thừa cựng cơ số: (x ạ 0, ) Khi nhõn hai luỹ thừa cựng cơ số, ta giữ nguyờn cơ số và cộng hai số mũ. Khi chia hai luỹ thừa cựng cơ số khỏc 0, ta giữ nguyờn cơ số và lấy số mũ của luỹ thừa bị chia trừ đi số mũ của luỹ thừa chia. 3. Luỹ thừa của luỹ thừa. Khi tớnh luỹ thừa của một luỹ thừa, ta giữ nguyờn cơ số và nhõn hai số mũ. 4. Luỹ thừa của mụt tớch - luỹ thừa của một thương. (y ạ 0) Luỹ thừa của một tớch bằng tớch cỏc luỹ thừa. Luỹ thừa của một thương bằng thương cỏc luỹ thừa. Toựm taột caực coõng thửực veà luyừ thửứa x , y ẻ Q; x = y = 1. Nhõn hai lũy thừa cựng cơ số xm . xn = ()m .( )n =( )m+n 2. Chia hai lũy thừa cựng cơ số xm : xn = ()m : ( )n =( )m-n (m≥n) 3. Lũy thừa của một tớch (x . y)m = xm . ym 4. Lũy thừa của một thương (x : y)m = xm : ym 5. Lũy thừa của một lũy thừa (xm)n = xm.n 6. Lũy thừa với số mũ õm. xn = * Quy ước: a1 = a; a0 = 1. II. Luyện tập: Dạng 1: Sử dụng định nghĩa của luỹ thừa với số mũ tự nhiờn Phương phỏp: Cần nắm vững định nghĩa: xn = (xẻQ, nẻN, n > 1) Quy ước: x1 = x; x0 = 1; (x ạ 0) Bài 1: Tớnh a) b) c) d) Bài 2: Điền số thớch hợp vào ụ vuụng a) b) c) Bài 3: Điền số thớch hợp vào ụ vuụng: a) b) c) Bài 4: Viết số hữu tỉ dưới dạng một luỹ thừa. Nờu tất cả cỏc cỏch viết. Dạng 2: Đưa luỹ thừa về dạng cỏc luỹ thừa cựng cơ số. Phương phỏp: Áp dụng cỏc cụng thức tớnh tớch và thương của hai luỹ thừa cựng cơ số. (x ạ 0, ) Áp dụng cỏc cụng thức tớnh luỹ thừa của luỹ thừa Sử dụng tớnh chất: Với a ạ 0, a , nếu am = an thỡ m = n Bài 1: Tớnh a) b) c) a5.a7 Bài 2: Tớnh a) b) c) Bài 3: Tỡm x, biết: a) b) Dạng 3: Đưa luỹ thừa về dạng cỏc luỹ thừa cựng số mũ. Phương phỏp: Áp dụng cỏc cụng thức tớnh luỹ thừa của một tớch, luỹ thừa của một thương: (y ạ 0) Áp dụng cỏc cụng thức tớnh luỹ thừa của luỹ thừa Bài 1: Tớnh a) b) (0,125)3.512 c) d) Bài 2: So sỏnh 224 và 316 Bài 3: Tớnh giỏ trị biểu thức a) b) c) d) Bài 4 Tớnh . 1/ 2/ 3/ 4/ 253 : 52 5/ 22.43 6/ 7/ 8/ 9/ 10/ 11/ 12/ 13/ 273:93 14/ 1253:93 ; 15/ 324 : 43 ;16/ (0,125)3 . 512 ;17/(0,25)4 . 1024 * Củng cố: - Nhắc lại các dạng toán đã chữa. * Hướng dẫn về nhà: - ễn lại cỏc quy tắc tớnh tớch và thương của hai luỹ thừa cựng cơ số, luỹ thừa của luỹ thừa, luỹ thừa của một tớch, luỹ thừa của một thương. - Xem lại cỏc bài toỏn đó giải Ngày:12/11/2010 Buổi: 6 Baứi taọp naõng cao veà luyừ thửứa Bài 1: Dùng 10 chữ số khác nhau để biểu diễn số 1 mà không dùng các phép tính cộng, trừ, nhân, chia. Bài 2: Tính: a) (0,25)3.32; b) (-0,125)3.804; c) ; d) . Bài 3: Cho x ẻ Q và x ≠ 0. Hãy viết x12 dưới dạng: Tích của hai luỹ thừa trong đó có một luỹ thừa là x9 ? Luỹ thừa của x4 ? Thương của hai luỹ thừa trong đó số bị chia là x15 ? Bài 4: Tính nhanh: a) A = 2008(1.9.4.6).(.9.4.7)(1.9.9.9); b) B = (1000 - 13).(1000 - 23).(1000 - 33 )(1000 – 503). Bài 5: Tính giá trị của: M = 1002 – 992 + 982 – 972 + + 22 – 12; N = (202 + 182 + 162 + + 42 + 22) – (192 + 172 + 152 + + 32 + 12); P = (-1)n.(-1)2n+1.(-1)n+1. Bài 6: Tìm x biết rằng: a) (x – 1)3 = 27; b) x2 + x = 0; c) (2x + 1)2 = 25; d) (2x – 3)2 = 36; e) 5x + 2 = 625; f) (x – 1)x + 2 = (x – 1)x + 4; g) (2x – 1)3 = -8. h) = 2x; Bài 7: Tìm số nguyên dương n biết rằng: a) 32 4; c) 9.27 ≤ 3n ≤ 243. Bài 8: Cho biểu thức P = . Hãy tính giá trị của P với x = 7 ? Bài 9: So sánh: a) 9920 và 999910; b) 321 và 231; c) 230 + 330 + 430 và 3.2410. Bài 10: Chứng minh rằng nếu a = x3y; b = x2y2; c = xy3 thì với bất kì số hữu tỉ x và y nào ta cũng có: ax + b2 – 2x4y4 = 0 ? Bài 11: Chứng minh đẳng thức: 1 + 2 + 22 + 23 + + 299 + 2100 = 2101 – 1. Bài 12: Tìm một số có 5 chữ số, là bình phương của một số tự nhiên và được viết bằng các chữ số 0; 1; 2; 2; 2. * Củng cố - Nhắc lại các dạng toán đã chữa. * Hướng dẫn về nhà: - ễn lại cỏc quy tắc tớnh tớch và thương của hai luỹ thừa cựng cơ số, luỹ thừa của luỹ thừa, luỹ thừa của một tớch, luỹ thừa của một thương. - Xem lại cỏc bài toỏn đó giải. - Chuẩn bị: Chủ đề tiếp theo “Đường thẳng vuụng gúc đường thẳng song song” Ngày:20/11/2010 đường thẳng vuông góc, đường thẳng song song (Thời lượng dạy 2 buổi ) I. Mục tiêu: Sau tiết học, học sinh được: - Củng cố định nghĩa hai góc đối đỉnh, tính chất hai góc đối đỉnh. - Rèn kĩ năng chứng minh hai góc đối đỉnh. - Mở rộng: các phương pháp chứng minh hai góc đối đỉnh. - Củng cố định nghĩa hai đường thẳng vuông góc, đường trung trực của đoạn thẳng, tính chất hai đường thẳng vuông góc, các phương pháp chứng minh hai đường thẳng vuông góc, đường trung trực của đoạn thẳng. - Củng cố: định nghĩa, dấu hiệu nhận biết, phương pháp chứng minh hai đường thẳng song song. - Rèn kĩ năng chứng minh hai đường thẳng song song, tính góc dựa vào hai đường thẳng song song. II Tiến trình dạy học ổn định lớp Kiểm tra (xen kẽ) Bài mới: Buổi 7 Hai góc đổi đỉnh,hai đường thẳng vuông góc *phương pháp: 1.Muốn chứng minh hai góc xOy và x’Oy’ là hai góc đối đỉnh ta có thể dùng một số phương pháp: - Chứng minh hai cạnh của một góc là hai tia đối của hai cạnh của góc còn lại (định nghĩa). - Chứng minh rằng: , tia Ox và tia Ox’ đối nhau còn hai tia Oy và Oy’ nằm trên hai nửa mặt phẳng đối nhau có bờ là đường thẳng xOx’ 2 Phương pháp chứng minh hai đường thẳng vuông góc : - Chứng minh một trong bốn góc tạo thành có một góc vuông. - Chứng minh hai góc kề bù bằng nhau. - Chứng minh hai tia là hai tia phân giác của hai góc kề bù. - Chứng minh hai đường thẳng đó là hai đường phân giác của 2 cặp góc đối đỉnh. 3. Phương pháp chứng minh một đường thẳng là trung trực của đoạn thẳng: - Chứng minh a vuông góc với AB tại trung điểm của AB. - Lấy một điểm M tùy ý trên a rồi chứng minh MA = MB *. Bài tập 1.Bài tập về hai gúc đối đỉnh. Bài 1. Vẽ hai đường thẳng cắt nhau, trong góc tạo thành có một góc bằng 500. Tính các góc còn lại. Bài 2 . Trên đường thẳng AA’ lấy một điểm O. Trên một nửa mặt phẳng có bờ là AA’vẽ tia OB sao cho . trên nửa mặt phẳng còn lại vẽ tia OC sao cho: . a/ Gọi OB’ là tia phân giác của góc A’OC. Chứng minh rằng hai góc AOB và A’OB’ là hai góc đối đỉnh. b/ Trên nửa mặt phẳng bờ AA’ có chứa tia OB, vẽ tia OD sao cho . Tính góc A’OD. Bài 3. Cho tia Om là tia phân giác của góc xOy, On là tia phân giác của góc đối đỉnh với góc xOy. a/ Nếu góc xOy = 500, hãy tính số đo của các góc kề bù với góc xOy. b/ Các tia phân giác Ok, Oh của các góc kề bù đó có phải là hai tia đối nhau không? tại sao? c/ Bốn tia phân giác Om, On, Ok, Oh từng đôi một tạo thành các góc bằng bao nhiêu độ. Bài 4. a/ Vẽ đường tròn tâm O bán kính 2cm. b/ Vẽ góc AOB có số đo bằng 600. Hai điểm A, B nằm trên đường tròn(O; 2cm). c/ Vẽ góc BOC có số đo bằng 600. Điểm C thuộc đường tròn (O; 2cm). d/ Vẽ các tia OA’, OB’, OC’ là các tia đối của các tia OA, OB, OC. Các điểm A’, B’, C’ thuộc đường tròn (O; 2cm). e/ Viết tên năm cặp góc đối đỉnh. f/ Viết tên năm cặp góc bằng nhau mà không đối đỉnh. *. Bài tập tự luyện. Cho hai đường thẳng MN và PQ cắt nhau tại A tạo thành góc MAP có số đo là 330. a/ Tính số đo góc NAQ. b/ Tính số đo góc MAQ. c/ Viết tên các cặp góc đối đỉnh. d/ Viết tên các cặp góc bằng nhau. 2.Bài tập về hai đường thẳng vuụng gúc . Bài 1. Vẽ góc xOy có số đo bằng 450. Lấy điểm A bất kì trên Ox, vẽ qua A đường thẳng vuông góc với đường tia Ox và đường thẳng vuông góc với tia Oy. Bài 2. Vẽ góc xOy có số đo bằng 600. Vẽ đường thẳng vuông góc với đường tia Ox tại A. Trên lấy B sao cho B nằm ngoài góc xOy. Qua B vẽ đường thẳng vuông góc với tia Oy tại C. Hãy đo góc ABC bằng bao nhiêu độ. Bài 3. Vẽ góc ABC có số đo bằng 1200 , AB = 2cm, AC = 3cm. Vẽ đường trung trực của đoạn AB. Vẽ đường trung trực của đoạn thẳng AC. Hai đường thẳng và cắt nhau tại O. Bài 4 Cho góc xOy= 1200, ở phía ngoài của góc vẽ hai tia Oc và Od sao cho Od vuông góc với Ox, Oc vuông góc với Oy. Gọi Om là tia phân giác của góc xOy, On là tia phân giác của góc dOc. Gọi Oy’ là tia đối của tia Oy. Chứng minh: a/ Ox là tia phân giác của góc y’Om. b/ Tia Oy’ nằm giữa 2 tia Ox và Od. c/ Tính góc mOc. d/ Góc mOn = 1800. Bài 5. Cho góc nhọn xOy, trên tia Ox lấy điểm A. Kẻ đường thẳng đI qua A vuông góc vớiOx, đường thẳng này cắt Oy tại B. Kẻ đường vuông góc AH với cạnh OB. a/ Nêu tên các góc vuông. b/ Nêu tên các cặp góc có cạnh tương ứng vuông góc. Bài 6 Cho góc bẹt AOB. Trên cùng một nửa mặt phẳng bờ AB ta vẽ hai tia OC và OD sao cho . Gọi tia OE là tia đối của tia OD. Chứng minh rằng: a/ . b/ Tia OB là tia phân giác của góc COE. *Củng cố: Caực kiến thức vừa chữa * Hướng dẫn về nhà: xem các bài tập đã chữa Ngày: Buổi 8:Hai đường thẳng song song. . Bài 1. Cho hai điểm phân biệt A và B. Hãy vẽ một đường thẳng a đi qua A và một đường thẳng b đi qua B sao cho b // a. Bài 2. Cho hai đường thẳng a và b. Đường thẳng AB cắt hai đường thẳng trên tại hai điểm A và B. a/ Hãy nêu tên những cặp góc so le trong, những cặp góc đối đỉnh, những cặp góc kề bù. b/ Biết . Tính những góc còn lại. Bài 3. Cho tam giác ABC, . Trên tia đối của tia AB lấy điểm O. Trên nửa mặt phẳng không chứa điểm C bờ là đường thẳng AB ta vẽ tia Ox sao cho . Gọi Ay là tia phân giác của góc CAO. Chứng minh: Ox // BC; Ay // BC. Bài 4. Cho hai đường thẳng a và b. Đường thẳng AB cắt hai đường thẳng trên tại hai điểm A và B. a/ Nếu biết thì hai đường thẳng a và b có song song với nhau hay không? Muốn a // b thì phải thay đổi như thế nào? b/ Biết thì a và b có song song không? Muốn a // b thì phải thay đổi như thế nào? Bài 5. Một đường thẳng cắt hai đường thẳng xx’, yy’ tại hai điểm A, B sao cho hai góc so le trong . Gọi At là tia phân giác của góc xAB, Bt’ là tia phân giác của góc Aby. Chứng minh rằng: a/ xx’ // yy’ b/ At // Bt’. * Bài tập tự luyện. Bài 1. Vẽ hai đường thẳng a và b sao cho a // b. Lấy điểm M nằm ngoài hai đường thẳng a và b. Vẽ đường thẳng c đi qua M và vuông góc với a, với b. Bài 2. Cho góc xOy và điểm M trong góc đó. Qua M kẻ MA vuông góc với Ox cắt Oy tại C, kẻ MB vuông góc với Oy cắt Ox tại D. ỳư D và C kẻ các tia vuông góc với Ox, Oy các tia này cắt Oy và Ox lần lượt tại E và F và cắt nhau tại N. Tìm các cặp góc có cạnh tương ứng song song. *Củng cố: Nhắc lại các dạng toán và phương phỏp giải * Hướng dẫn về nhà: xem các bài tập đã chữa Buổi 9:Tiên đề Ơclít. (Phương pháp chứng minh bằng phương pháp phản chứng) *Bài tập. Bài 1. Cho tam giác ABC, qua A vẽ đường thẳng a // BC, qua B vẽ b // AC. a/ Vẽ được mấy đường thẳng a, mấy đường thẳng b, vì sao? b/ a và b cắt nhau tại O. Hãy xác định một góc đỉnh O sao cho có số đo bằng góc C của tam giác ABC. Bài 2. Trong hai đường thẳng a và b song song với nhau. Đường thẳng c cắt a và b tại A và B. Một góc đỉnh A bằng n0. Tính số đo các góc đỉnh B. Bài 3. Cho tam giác ABC, qua A vẽ đường thẳng a // BC, qua B vẽ b // AC, qua C vẽ c // AB.a, b, c lần lượt cắt nhau tại P, Q, R. Hãy so sánh các góc của tam giác PQR và các góc của tam giác ABC. Bài 4. Cho tam giác ABC, trên cạnh AB lấy điểm M. Trên nửa mặt phẳng bờ AB có chứa điểm C và tia Mx sao cho . a/ Chứng minh rằng: Mx // BC, Mx cắt AC. b/ Goị D là giao điểm của Mx và AC. Lấy N nằm giữa C và D. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ny sao cho . Chứng minh rằng: Mx // Ny. * Bài tập tự luyện Bài 1. Cho tam giác ABC. Chứng minh rằng: a/ Nếu đường thẳng m song song với cạnh BC thì m sẽ cắt các đường thẳng AB, AC. b/ Nếu đường thẳng m song song với cạnh BC và cắt cạnh AB thì m sẽ cắt cạnh AC. Bài 2. Cho tam giác ABC. Trên nửa mặt phẳng AC không chứa điểm B, vẽ tia Ax sao cho . Trên nửa mặt phẳng bờ AB không chứa điểm C, vẽ tia Ay sao cho . Chứng minh: Ax và Ay là hai tia đối nhau. *Củng cố: Caực kiến thức vừa chữa * Hướng dẫn về nhà: - Xem các bài tập đã chữa - Nghiờn cứu về tỉ lệ thức và t/c của dóy tỉ số bằng nhau. Ngày : Buổi 10 tỉ lệ thức và dãy tỉ số bằng nhau I/ MUẽC TIEÂU: Sau khi hoùc xong"tỉ lệ thức và dãy tỉ số bằng nhau" , hoùc sinh coự khaỷ naờng: + Hieồu roừ theỏ naứo laứ tổ leọ thửực, naộm vửừng hai tớnh chaỏt cuỷa tổ leọ thửực. Nhaọn bieỏt ủửụùc tổ leọ thửực vaứ caực soỏ haùng cuỷa tổ leọ thửực. + Naộm vửừng tớnh chaỏt cuỷa daừy tổ soỏ baống nhau. Coự kú naờng vaọn duùng tớnh chaỏt naứy ủeồ giaỷi caực baứi toaựn chia theo tổ leọ. + Vaọn duùng lyự thuyeỏt ủửụùc hoùc ủeồ giaỷi quyeỏt toõt caực baứi toựan coự lieõn quan. II. Chuẩn bị: 1. Giáo viên: Bảng phụ. 2. Học sinh: ễn tập cỏc kiến thức về tỉ lệ thức và t/c của dóy tỉ số bằng nhau. III. Tiến trình DạY HọC: 1ổn định lớp 2. Kiểm tra bài cũ:- Kốm theo với hỏi phần lý thuyết 3. Bài giảng : + Tổ leọ thửực laứ moọt ủaỳng thửực giửừa hai tổ soỏ: hoaởc a:b = c:d. - a, d goùi laứ Ngoaùi tổ. b, c goùi laứ trung tổ. + Neỏu coự ủaỳng thửực ad = bc thỡ ta coự theồ laọp ủửụùc 4 tổ leọ thửực : + Tớnh chaỏt: = + Neỏu coự thỡ ta noựi a, b, c tổ leọ vụựi ba soỏ 3; 4; 5. + Muoỏn tỡm moọt thaứnh phaàn chửa bieỏt cuỷa tổ leọ thửực, ta laọp tớch theo ủửụứng cheựo roài chia cho thaứnh phaàn coứn laùi: Tửứ tổ leọ thửực 1/ Toựm taột lyự thuyeỏt: 2/ Baứi taọp: Baứi 1:Thay tổ soỏ caực soỏ baống tổ soỏ cuỷa caực soỏ nguyeõn: ; 2,1:5,3 ; ; 0,23: 1,2 Baứi 2: Caực tổ soỏ sau ủaõy coự laọp thaứnh tổ leọ thửực khoõng? a) vaứ ; b) 0,25:1,75 vaứ ; c) 0,4: vaứ . Baứi 3: Coự theồ laọp ủửụùc tổ leọ thửực tửứ caực soỏ sau ủaõy khoõng? Neỏu coự haừy vieỏt caực tổ leọ thửực ủoự: 3; 9; 27; 81; 243. Baứi 4: Tỡm x trong caực tổ leọ thửực sau: a) ; b) ; c) ; d) ; e) 2,5:x = 4,7:12,1 Baứi 5: Tỡm x trong tổ leọ thửực: a) ; b) ; c) Baứi 6: Tỡm hai soỏ x, y bieỏt: vaứ x +y = 40. Baứi 7 : Chửựng minh raống tửứ tổ leọ thửực (Vụựi b,d ạ 0) ta suy ra ủửụùc : . Baứi 8 : Tỡm x, y bieỏt : a) vaứ x+y = -60 ; b) vaứ 2x-y = 34 ; c) vaứ x2+ y2 =100 Baứi 9 : Ba voứi nửụực cuứng chaỷy vaứo moọt caựi hoà coự dung tớch 15,8 m3 tửứ luực khoõng coự nửụực cho tụựi khi ủaày hoà. Bieỏt raống thụứi gian chaỷy ủửụùc 1m3 nửụực cuỷa voứi thửự nhaỏt laứ 3 phuựt, voứi thửự hai laứ 5 phuựt vaứ voứi thửự ba laứ 8 phuựt. Hoỷi moói voứi chaỷy ủửụùc bao nhieõu nửụực ủaày hoà. HD : Goùi x,y,z laàn lửụùt laứ soỏ nửụực chaỷy ủửụùc cuỷa moói voứi. Thụứi gian maứ caực voứi ủaừ chaỷy vaứo hoà laứ 3x, 5y, 8z. Vỡ thụứi giaỷn chaỷy laứ nhử nhau neõn : 3x=5y=8z Baứi 10 : Ba hoùc sinh A, B, C coự soỏ ủieồm mửụứi tổ leọ vụựi caực soỏ 2 ; 3 ; 4. Bieỏt raống toồng soỏ ủieồm 10 cuỷa A vaứ C hụn B laứ 6 ủieồm 10. Hoỷi moói em coự bao nhieõu ủieồm 10 ? 3/ Bài tập tự luyện Bài1Tìm các số tự nhiên a và b để thoả mãn và (a, b) = 1 Bài:2: Tìm các số tự nhiên a, b, c, d nhỏ nhất sao cho: ; ; Bài;3:Chứng minh rằng nếu thì (giả thiết các tỉ số đều có nghĩa). Bài;5: Biết Chứng minh rằng: Bài:6:Cho tỉ lệ thức . Chứng minh rằng: và Bài:7:Tìm x, y, z biết: ; và Bài; 8:Tìm x, y, z biết và Bài;9: CMR: nếu thì (Giả sử các tỉ số đều có nghĩa). 4/ Hướng dẫn về nhà: - Xem lại cỏc bài toỏn đó chữa và làm cỏc bài tập tự luyện Ngày : Buổi 11 SOÁ VOÂ Tặ, KHAÙI NIEÄM CAấN BAÄC HAI, SOÁ THệẽC I/ MUẽC TIEÂU: Sau khi hoùc xong "SOÁ VOÂ Tặ, KHAÙI NIEÄM CAấN BAÄC HAI, SOÁ THệẽC" , hoùc sinh coự khaỷ naờng: +Hieồu ủửụùc theỏ naứo laứ soỏ voõ tổ, caờn baọc hai vaứ soỏ thửùc laứ gỡ. + Bieỏt sửỷ duùng ủuựng kớ hieọu . + Bieỏt ủửụùc soỏ thửùc laứ teõn goùi chung cho soỏ voõ tổ vaứ soỏ hửừu tổ. Thaỏy ủửụùc sửù phaựt trieồn cuỷa heọ thoỏng soỏ tửứ N, Z, Q ủeỏn R. khaự gioỷi. II. Chuẩn bị: III. Tiến trình DạY HọC+: 1ổn định lớp: 2. Kiểm tra bài cũ:- Kốm theo với hỏi phần lý thuyết 3. Bài giảng : + Soỏ voõ tổ laứ soỏ chổ vieỏt ủửụùc dửụựi daùng soỏ thaọp phaõn voõ haùn khoõng tuaàn hoaứn. Soỏ 0 khoõng phaỷi laứ soỏ voõ tổ. + Caờn baọc hai cuỷa moọt soỏ a khoõng aõm laứ moọt soỏ x khoõng aõm sao cho x2 = a. Ta kớ hieọu caờn baọc hai cuỷa a laứ . Moói soỏ thửùc dửụng a ủeàu coự hai caờn baọc hai laứ vaứ - . Soỏ 0 coự ủuựng moọt caờn baọc hai laứ 0. Soỏ aõm khoõng coự caờn baọc hai. + Taọp hụùp caực soỏ voõ tổ kớ hieọu laứ I. Soỏ thửùc bao goàm soỏ hửừu tổ vaứ soỏ voõ tổ. Do ủoự ngửụứi ta kớ hieọu taọp hụùp soỏ thửùc laứ R = I Q. + Moọt soỏ giaự trũ caờn ủaởc bieọt caàn chuự yự: + Soỏ thửùc coự caực tớnh chaỏt hoaứn toaứn gioỏng tớnh chaỏt cuỷa soỏ hửừu tổ. + Vỡ caực ủieồm bieồu dieón soỏ thửùc ủaừ laỏp daày truùc soỏ neõn truùc soỏ ủửụùc goùi laứ truùc soỏ thửùc. 1/ Toựm taột lyự thuyeỏt: 2/ Baứi taọp: Baứi 1: Neỏu =2 thỡ x2 baống bao nhieõu? Baứi 2: Trong caực soỏ sau ủaõy, soỏ naứo coự caờn baọc hai? Tỡm caờn baọc hai cuỷa chuựng neỏu coự: 0; -16; 32 + 42; 25; 169; (-5)2; -64 Baứi 3: Tỡm caực caờn baọc hai khoõng aõm cuỷa caực soỏ sau: a. 25; b. 2500; c. (-5)2; d. 0,49; e.121; f.100000. Baứi 4: Tớnh : a) ; b) 5,4 + 7 Baứi 5: ẹieàn daỏu ẻ ; ẽ ; è thớch hụùp vaứo oõ vuoõng: a) -3 Q; b) -2Z; c) 2 R; d) I; e) N; f) I R Baứi 6: So saựnh caực soỏ thửùc: 3,7373737373 vụựi 3,74747474 -0,1845 vaứ -0,184147 6,8218218. vaứ 6,6218 -7,321321321 vaứ -7,325. Baứi 7: Tớnh baống caựch hụùp lớ: A = (-87,5)+{(+87,5)+[3,8+(-0,8)]} B = [9,5 + (-13)] + [(-5) + 8,5] Baứi 8: Saộp xeỏp caực

File đính kèm:

  • docgiao an toan7 hay nhat.doc